• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fórmula Fechada

Fórmula Fechada

Mensagempor Russman » Sex Jul 20, 2012 12:36

Eu procurei sem sucesso uma fórmula fechada para a derivada n-ésima total de um produto de N funções! Isto é, eu gostaria de encontrar uma fórmula fechada para a n-ésima derivada de :

\frac{\mathrm{d}^{n} }{\mathrm{d} x^{n}}\left [f_{1}(x).f_{2}(x).\cdot \cdot \cdot f_{N}(x)  \right ]=\frac{\mathrm{d}^{n} }{\mathrm{d} x^{n}}\prod_{j=1}^{N}f_{i}(x) = ?

Obrigado pela parceria.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Fórmula Fechada

Mensagempor e8group » Sex Jul 20, 2012 16:47

Russman . Não sei se vai te ajudar ,mas não seria isto ?

\frac{\mathrm{d^n }} {\mathrm{d} x^n}  \prod_{j=1}^{n} f_i(x) = \prod_{j=1}^{n}\left(f_i f_{(i+1)} \right )^{(n)} ,onde :

\left(f_i f_{(i+1)} \right )^{(n)} =\sum_{i=0}^{n}\binom{n}{i} f_i^{(n-i)}f_{(i+1)}^i

Uso da notação (n) significa derivar n-vezes .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fórmula Fechada

Mensagempor Russman » Sex Jul 20, 2012 22:49

Obrigado, Shantiago. Mas eu acredito que a fórmula não esteja certa. ;x
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.