• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números reais

Números reais

Mensagempor citadp » Dom Jun 24, 2012 16:02

Tenho uma dúvida neste exercicio:


F(x)=
{Ax , se x < 1
{Bx^2+3x+2 , se x >= 1

Calcule os números reais de A e B de modo de f seja diferenciavel no ponto 1.

o que faço aqui é que para ser difereciavel , tem que ser continua,

fiz limite para 1+ deu-me que é igual a B + 5, logo limite para 1- tem que dar igual, para ser diferenciavel a derivada da esquerda e direita no ponto tem que ser iguais, o que me dá é que o B = -3/2 e o A=0, o que acho muito estranho o A dar resultado zero. já fiz mlilhares de vezes e dá sempre o mesmo, agradecia que alguém me ajudasse.
citadp
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Jun 02, 2012 13:11
Formação Escolar: SUPLETIVO
Área/Curso: Informática
Andamento: cursando

Re: Números reais

Mensagempor e8group » Dom Jun 24, 2012 19:22

citadp escreveu:Tenho uma dúvida neste exercicio:


F(x)=
{Ax , se x < 1
{Bx^2+3x+2 , se x >= 1

Calcule os números reais de A e B de modo de f seja diferenciavel no ponto 1.

o que faço aqui é que para ser difereciavel , tem que ser continua,

fiz limite para 1+ deu-me que é igual a B + 5, logo limite para 1- tem que dar igual, para ser diferenciavel a derivada da esquerda e direita no ponto tem que ser iguais, o que me dá é que o B = -3/2 e o A=0, o que acho muito estranho o A dar resultado zero. já fiz mlilhares de vezes e dá sempre o mesmo, agradecia que alguém me ajudasse.


f(x) = \begin{cases} ax  ; x < 1 \\
bx^2+3x +2 ; x \geq 1\end{cases} .

note que ,

\lim_{x\to 1 } f(x) = f(1) , ou seja :

a= b+ 5 .

Para existir a derivada em x = 1 , temos que as derivadas laterais são iguais .Daí ,

a = 2b +3 ,lembrando que a= b+ 5 ,temos :

b+ 5 = 2b +3 \therefore b = 2 \Longrightarrow a = b + 5 = 7
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.