• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites em R2] duvida em exercício

[Limites em R2] duvida em exercício

Mensagempor inoj123 » Ter Jun 05, 2012 15:21

Boa tarde, sou novo neste fórum, por isso peço desculpa de estou a fazer algo de errado,

passo a especificar o exercício:

f\left( x,y\right) =\frac{x-xe^{x^{3}y}}{x^{4}y}

a solução desse limite, supostamente é -1, no entanto tentei ver o limite para algumas rectas...

para y=0, deu me uma indeterminação \frac{0}{0}
para y={x}^{\frac{1}{4}} e o resultado deu me 0, visto que a solução supostamente é -1 como deveria ter encarado este exercício?


Cumprimentos,
Jóni Silva.
inoj123
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jun 05, 2012 15:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engª Informática
Andamento: cursando

Re: [Limites em R2] duvida em exercício

Mensagempor LuizAquino » Qua Jun 06, 2012 10:09

inoj123 escreveu:
passo a especificar o exercício:

f\left( x,y\right) =\frac{x-xe^{x^{3}y}}{x^{4}y}

a solução desse limite, supostamente é -1, no entanto tentei ver o limite para algumas rectas...

para y=0, deu me uma indeterminação \frac{0}{0}

para y={x}^{\frac{1}{4}} e o resultado deu me 0, visto que a solução supostamente é -1 como deveria ter encarado este exercício?


Você cometeu algum engano em suas contas.

Eu presumo que você deseja calcular o limite:

\lim_{(x,\,y)\to (0,\,0)} \frac{x-xe^{x^3y}}{x^4y}

Considerando o caminho y = x^{\frac{1}{4}}, quando x\to 0 temos que y\to 0 . Sendo assim, podemos reescrever o limite como sendo:

\lim_{x\to 0} \frac{x-xe^{x^3x^{\frac{1}{4}}}}{x^4x^{\frac{1}{4}}} = \lim_{x\to 0} \frac{x\left(1-e^{x^3x^{\frac{1}{4}}}\right)}{x^4x^{\frac{1}{4}}}

= \lim_{x\to 0} \frac{1-e^{x^3x^{\frac{1}{4}}}}{x^3x^{\frac{1}{4}}}

= \lim_{x\to 0} \frac{1-e^{x^{\frac{13}{4}}}}{x^{\frac{13}{4}}}

Fazendo a substituição u = 1- e^{x^{\frac{13}{4}}}, quando x\to 0 temos que u\to 0 .

Além disso, temos que x^{\frac{13}{4}} = \ln(1 - u) . Desse modo, temos que:

\lim_{x\to 0} \frac{1-e^{x^{\frac{13}{4}}}}{x^{\frac{13}{4}}} = \lim_{u\to 0} \frac{u}{\ln(1-u)}

= \lim_{u\to 0} \frac{u:u}{[\ln(1-u)]:u}

= \lim_{u\to 0} \frac{1}{\frac{1}{u}\ln(1-u)}

= \lim_{u\to 0} \frac{1}{\ln(1-u)^\frac{1}{u}}

Lembrando que \lim_{x\to 0} (1 + x)^{\frac{1}{x}} = e , podemos obter que:

= \frac{1}{\ln e^{-1}}

= \frac{1}{ - \ln e}

= -1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limites em R2] duvida em exercício

Mensagempor inoj123 » Qua Jun 06, 2012 16:03

muito obrigado! ajudou bastante

Cumprimentos,
Jóni Silva.
inoj123
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Jun 05, 2012 15:11
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engª Informática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}