• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] AJUDA Calculo de Limite

[Limite] AJUDA Calculo de Limite

Mensagempor will94 » Ter Mai 22, 2012 20:32

Preciso resolver esse limite, mas não sei como proceder com uma função com duas raízes diferentes:

\lim_{x\rightarrow 64} \left(\sqrt[2]{x}-8 \right)/\left(\sqrt[3]{x}-4 \right)

O resultado eu sei que dá 3.
Muito obrigado àquele(a) que me ajudar.
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Limite] AJUDA Calculo de Limite

Mensagempor LuizAquino » Qua Mai 23, 2012 11:46

will94 escreveu:Preciso resolver esse limite, mas não sei como proceder com uma função com duas raízes diferentes:

\lim_{x\rightarrow 64} \left(\sqrt[2]{x}-8 \right)/\left(\sqrt[3]{x}-4 \right)

O resultado eu sei que dá 3.
Muito obrigado àquele(a) que me ajudar.


Note que:

\lim_{x\to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x}-4} = \lim_{x\to 64} \frac{\sqrt{x} - \sqrt{64}}{\sqrt[3]{x}-\sqrt[3]{64}}

Agora multiplique o numerador e o denominador pela expressão:

\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)

Temos então que:

\lim_{x\to 64} \frac{\sqrt{x} - \sqrt{64}}{\sqrt[3]{x}-\sqrt[3]{64}} = \lim_{x\to 64} \frac{\left(\sqrt{x} - \sqrt{64}\right)\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)}{\left(\sqrt[3]{x}-\sqrt[3]{64}\right)\left(\sqrt{x} + \sqrt{64}\right)\left(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{64} + \sqrt[3]{64}^2\right)}

Agora use os seguintes produtos notáveis:

a^2 - b^2 = (a - b)(a + b)

a^3 - b^3 = (a - b)\left(a^2 + ab + b^2\right)

Tente concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.