• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Inversa

Função Inversa

Mensagempor matematicouff » Ter Mai 15, 2012 14:31

Como mostro que essa função admite inversa?

- Mostre que a função f(x)=x.arctg(x) admite inversa no intervalo (-\infty,0], e use o Teorema da Função Inversa para calcular ({f}^{-1}){}^{\prime}(f(-1)).
matematicouff
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 29, 2012 15:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Inversa

Mensagempor LuizAquino » Sex Mai 18, 2012 19:54

matematicouff escreveu:Como mostro que essa função admite inversa?

- Mostre que a função f(x)=x.arctg(x) admite inversa no intervalo (-\infty,0], e use o Teorema da Função Inversa para calcular ({f}^{-1}){}^{\prime}(f(-1)).


Sabemos que:

Se f é estritamente crescente ou estritamente decresencente em seu domínio, então f é inversível.

Lembrando que uma função é estritamente crescente em [a, b] quando f^\prime(x) > 0 para todo x em [a, b]. Por outro lado, uma função é estritamente decrescente em [a, b] quando f^\prime(x) < 0 para todo x em [a, b].

Agora tente usar essas informações.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função Inversa

Mensagempor matematicouff » Dom Mai 20, 2012 04:47

Ok, derivei a função e deu o seguinte: {f}^{\prime}(x)=\frac{x}{1+x^2}+arctg(x).

Analizando o sinal dessa função, vemos que ela é negativa em todo o intervalo (-\infty, 0] ==> {f}^{\prime} (x)=\frac{(x)<0}{(1+x^2)>0}+(arctg(x))<0. Logo, f é decrescente nesse intervalo e então admite inversa.
Empaquei agora foi na derivada. Poderia me ajudar?
matematicouff
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 29, 2012 15:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Inversa

Mensagempor LuizAquino » Dom Mai 20, 2012 21:39

matematicouff escreveu:Ok, derivei a função e deu o seguinte: {f}^{\prime}(x)=\frac{x}{1+x^2}+arctg(x).


Ok.

matematicouff escreveu:Analizando o sinal dessa função, vemos que ela é negativa em todo o intervalo (-\infty, 0] ==> {f}^{\prime} (x)=\frac{(x)<0}{(1+x^2)>0}+(arctg(x))<0. Logo, f é decrescente nesse intervalo e então admite inversa.


Cuidado! O intervalo que você escreveu inclui o zero. Note que para x = 0 a derivada é nula, e não negativa como você afirma.

Sendo assim, primeiro você pode afirmar que a função f é estritamente decrescente em (-\infty,\, 0) .

Em seguida, usando a continuidade de f, você pode incluir o zero nesse intervalo e dizer que ela ainda é estritamente decrescente em (-\infty,\, 0] .

matematicouff escreveu:Empaquei agora foi na derivada. Poderia me ajudar?


Pelo Teorema da Função Inversa, temos que:

\left(f^{-1}\right)^\prime (f(-1)) = \frac{1}{f^\prime (-1)}

Note que você já calculou f^\prime (x) . Basta agora avaliá-la em x = -1.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59