por matematicouff » Dom Mai 20, 2012 04:08
Alguém poderia me ajudar nesse assunto?
Estou com dificuldades em derivação logarítmica. Gostaria de saber como se solucionam essas questões e o que estaria fazendo de errado, já que parto sempre do princípio:
Se

então
![{f}^{\prime}(x)={f(x)}^{g(x)}.\left[{g}^{\prime}(x).lnf(x)+\frac{g(x)}{f(x)}.{f}^{\prime}(x) \right] {f}^{\prime}(x)={f(x)}^{g(x)}.\left[{g}^{\prime}(x).lnf(x)+\frac{g(x)}{f(x)}.{f}^{\prime}(x) \right]](/latexrender/pictures/0bdf6b27eed80b7f18c508e265d3b807.png)
.
Consegui fazer algumas questões dessa maneira, já outras não consegui de forma alguma. Eis algumas:
a)
![f(x)=\frac{{e}^{sen2x.\sqrt[]{x}}}{{e}^{cos3x}} f(x)=\frac{{e}^{sen2x.\sqrt[]{x}}}{{e}^{cos3x}}](/latexrender/pictures/a43de24ad9d8ec72d54d6ea9597cab96.png)
b)
![f(x)={e}^{(\sqrt[]{x})}.ln(\sqrt[]{x}) f(x)={e}^{(\sqrt[]{x})}.ln(\sqrt[]{x})](/latexrender/pictures/a951516a1fbe2b66bca6f925325c721f.png)
c)

d)

-
matematicouff
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Abr 29, 2012 15:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Ter Mai 22, 2012 14:59
matematicouff escreveu:Alguém poderia me ajudar nesse assunto?
Estou com dificuldades em derivação logarítmica. Gostaria de saber como se solucionam essas questões e o que estaria fazendo de errado, já que parto sempre do princípio:
Se

então
![{f}^{\prime}(x)={f(x)}^{g(x)}.\left[{g}^{\prime}(x).lnf(x)+\frac{g(x)}{f(x)}.{f}^{\prime}(x) \right] {f}^{\prime}(x)={f(x)}^{g(x)}.\left[{g}^{\prime}(x).lnf(x)+\frac{g(x)}{f(x)}.{f}^{\prime}(x) \right]](/latexrender/pictures/0bdf6b27eed80b7f18c508e265d3b807.png)
.
Consegui fazer algumas questões dessa maneira, já outras não consegui de forma alguma. Eis algumas:
a)
![f(x)=\frac{{e}^{sen2x.\sqrt[]{x}}}{{e}^{cos3x}} f(x)=\frac{{e}^{sen2x.\sqrt[]{x}}}{{e}^{cos3x}}](/latexrender/pictures/a43de24ad9d8ec72d54d6ea9597cab96.png)
b)
![f(x)={e}^{(\sqrt[]{x})}.ln(\sqrt[]{x}) f(x)={e}^{(\sqrt[]{x})}.ln(\sqrt[]{x})](/latexrender/pictures/a951516a1fbe2b66bca6f925325c721f.png)
c)

d)

Ao invés de "decorar" a fórmula, o ideal é que você aprenda a técnica.
Eu farei o item a) e você tenta resolver o restante.
Temos que:

Note que f(x) > 0 para todo x no domínio de f. Desse modo, podemos aplicar o logaritmo natural em ambos os membros e ficar com:



Derivando ambos os membros, temos que:
![\left[\ln f(x)\right]^\prime = \left[\textrm{sen}\,2x\sqrt{x} - \cos 3x\right]^\prime \left[\ln f(x)\right]^\prime = \left[\textrm{sen}\,2x\sqrt{x} - \cos 3x\right]^\prime](/latexrender/pictures/61e0fbdedaaf711fba10993cbf9f85e2.png)

![f^\prime(x) = f(x)\left[3\sqrt{x}\cos 2x\sqrt{x} + 3\,\textrm{sen}\,3x\right] f^\prime(x) = f(x)\left[3\sqrt{x}\cos 2x\sqrt{x} + 3\,\textrm{sen}\,3x\right]](/latexrender/pictures/8abd55d953422fa33424c0d94ed57cf9.png)
![f^\prime(x) = \frac{e^{\,\textrm{sen}\,2x\sqrt{x}}}{e^{\cos 3x}}\left[3\sqrt{x}\cos 2x\sqrt{x} + 3\,\textrm{sen}\,3x\right] f^\prime(x) = \frac{e^{\,\textrm{sen}\,2x\sqrt{x}}}{e^{\cos 3x}}\left[3\sqrt{x}\cos 2x\sqrt{x} + 3\,\textrm{sen}\,3x\right]](/latexrender/pictures/dd794caa12ae173ad359315d1ad5b38c.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivação - derivação logarítmica
por teer4 » Ter Mai 21, 2013 12:11
- 0 Respostas
- 2059 Exibições
- Última mensagem por teer4

Ter Mai 21, 2013 12:11
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por Michelee » Seg Mai 16, 2011 15:24
- 1 Respostas
- 2113 Exibições
- Última mensagem por LuizAquino

Seg Mai 16, 2011 19:29
Cálculo: Limites, Derivadas e Integrais
-
- [Derivação]
por carolinenonato » Ter Abr 03, 2012 16:30
- 3 Respostas
- 3221 Exibições
- Última mensagem por MarceloFantini

Ter Abr 03, 2012 20:32
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por leticiapires52 » Qui Out 22, 2015 11:49
- 1 Respostas
- 1778 Exibições
- Última mensagem por Cleyson007

Qui Out 22, 2015 20:52
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por johnatta » Qui Jun 04, 2015 10:53
- 1 Respostas
- 1460 Exibições
- Última mensagem por nakagumahissao

Seg Out 05, 2015 15:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.