por gabrielnandi » Ter Mai 15, 2012 22:39
amigos... me ajudem a solucionar esta questao.
encontre o valor de A para ser convergente!

amigos.. ali onde é

(tendendo ao infinito)
eu nao consigo colocar sinal de + na frente.. o correto seria
+

muito obrigado
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
por gabrielnandi » Ter Mai 15, 2012 22:51
amigos... discupa pedir tudo mastigadinho.. pois eu nao consigo inicia esta questao...
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
por LuizAquino » Sex Mai 18, 2012 18:07
gabrielnandi escreveu:amigos... me ajudem a solucionar esta questao.
encontre o valor de A para ser convergente!

amigos.. ali onde é

(tendendo ao infinito)
eu nao consigo colocar sinal de + na frente.. o correto seria
+

Eu presumo que a integral seja:

gabrielnandi escreveu:amigos... discupa pedir tudo mastigadinho.. pois eu nao consigo inicia esta questao...
Para estudar a resolução da integral, eu gostaria de lhe dar uma dica. Você pode usar um programa para isso! Por exemplo, o
SAGE, o Mathematica, o Maple, etc.
Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do
SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução da integral indefinida associada a esse problema.
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
integrate 1/(e^(at)) dt
- Clique no botão de igual ao lado do campo de entrada.
- Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
- Pronto! Agora basta estudar a resolução.
Após seguir esses passos, você verá que:

Agora para calcular a integral imprópria desejada, temos então que:

![= \lim_{r\to +\infty} \left[-\frac{1}{a}e^{-at}\right]_0^r = \lim_{r\to +\infty} \left[-\frac{1}{a}e^{-at}\right]_0^r](/latexrender/pictures/2e44c7efc22a5bb862b7aaf53ea08aef.png)
![= \lim_{r\to +\infty} \left[-\frac{1}{a}e^{-ar} - \left(-\frac{1}{a}e^{-a\cdot 0}\right)\right] = \lim_{r\to +\infty} \left[-\frac{1}{a}e^{-ar} - \left(-\frac{1}{a}e^{-a\cdot 0}\right)\right]](/latexrender/pictures/abc90bd9c7ed5917df9a9e2a552fada1.png)

Agora é necessário usar os conhecimentos sobre os limites exponenciais.
Utilizando esses conhecimentos, sabemos que para a < 0 irá ocorrer

. Por outro lado, sabemos que para a > 0 irá ocorrer

.
Sendo assim, para que a integral imprópria seja convergente precisamos ter a > 0. Nesse caso, irá ocorrer:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por gabrielnandi » Sáb Mai 19, 2012 21:01
muito obrigado.. mais esses a tem restrições para os valores.. eu imagino que tenha q ser A>0
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
por LuizAquino » Sáb Mai 19, 2012 21:22
gabrielnandi escreveu:muito obrigado... mais esses a tem restrições para os valores.. eu imagino que tenha q ser A>0
Por favor, leia com atenção o que escrevi no final da mensagem acima: "
Sendo assim, para que a integral imprópria seja convergente precisamos ter a > 0."
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por gabrielnandi » Ter Mai 22, 2012 12:56
muito obrigado.. tava tao na pilha com esses exercicios que nem vi
-
gabrielnandi
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Dom Mai 15, 2011 18:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eletronica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [AJUDA] Integral convergente ou divergente
por gabrielnandi » Ter Mai 15, 2012 22:45
- 1 Respostas
- 1977 Exibições
- Última mensagem por LuizAquino

Sex Mai 18, 2012 17:43
Cálculo: Limites, Derivadas e Integrais
-
- CONVERGENTE
por camilasereno » Sáb Jun 11, 2016 20:30
- 0 Respostas
- 3476 Exibições
- Última mensagem por camilasereno

Sáb Jun 11, 2016 20:30
Conversão de Unidades
-
- Divergente ou convergente
por aline_n » Ter Jul 12, 2011 19:37
- 3 Respostas
- 2842 Exibições
- Última mensagem por LuizAquino

Qua Jul 13, 2011 10:20
Cálculo: Limites, Derivadas e Integrais
-
- Convergente ou Divergente?
por Cleyson007 » Qua Jul 13, 2011 21:29
- 2 Respostas
- 2998 Exibições
- Última mensagem por MarceloFantini

Qui Jul 14, 2011 07:56
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de série geométrica convergente
por andersontricordiano » Qua Abr 13, 2011 17:32
- 1 Respostas
- 2249 Exibições
- Última mensagem por FilipeCaceres

Qua Abr 13, 2011 19:45
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.