• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Calculo 1] Racionalizacao

[Calculo 1] Racionalizacao

Mensagempor gabriel feron » Seg Mai 14, 2012 16:21

Boa tarde, gostaria de tirar uma duvida sobre a questao:
\lim_{x->4}\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}}

Nao consigo chegar ao resultado que é \frac{2\sqrt[2]{2}}{3}, estou precisando de ajuda para desenvolver a questao, fiz 6 listas de exercicios e só nao consegui chegar ao resultado nessa questão por algum motivo que ainda estou em duvida :S, mas acredito que eu tenha errado na racionalizacao.

Att Gabriel Terra Feron
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando

Re: [Calculo 1] Racionalizacao

Mensagempor LuizAquino » Seg Mai 14, 2012 17:54

gabriel feron escreveu:Boa tarde, gostaria de tirar uma duvida sobre a questao:
\lim_{x->4}\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}}

Nao consigo chegar ao resultado que é \frac{2\sqrt[2]{2}}{3}, estou precisando de ajuda para desenvolver a questao, fiz 6 listas de exercicios e só nao consegui chegar ao resultado nessa questão por algum motivo que ainda estou em duvida :S, mas acredito que eu tenha errado na racionalizacao.


Por favor, envie a sua tentativa para que possamos corrigi-la.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Calculo 1] Racionalizacao

Mensagempor gabriel feron » Seg Mai 14, 2012 18:29

\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}} vezes \frac{\sqrt[2]{x-2}+\sqrt[2]{2}}{\sqrt[2]{x-2}+\sqrt[2]{2}} =  \frac{2x+1-6(\sqrt[2]{2x-1})+9}{x-4}=\frac{2x+10-6^\sqrt[2]{2x-1}}{x-4}

e agora???
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando

Re: [Calculo 1] Racionalizacao

Mensagempor LuizAquino » Seg Mai 14, 2012 18:42

gabriel feron escreveu:\frac{\sqrt[2]{2x+1}-3}{\sqrt[2]{x-2}-\sqrt[2]{2}} vezes \frac{\sqrt[2]{x-2}+\sqrt[2]{2}}{\sqrt[2]{x-2}+\sqrt[2]{2}} =  \frac{2x+1-6(\sqrt[2]{2x-1})+9}{x-4}=\frac{2x+10-6^\sqrt[2]{2x-1}}{x-4}

e agora???


Você errou a expressão no numerador.

Note que:

\lim_{x\to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}} = \lim_{x\to 4} \frac{\left(\sqrt{2x+1}-3\right)\left(\sqrt{x-2}+\sqrt{2}\right)}{\left(\sqrt{x-2}-\sqrt{2}\right)\left(\sqrt{x-2}+\sqrt{2}\right)}

= \lim_{x\to 4} \frac{\left(\sqrt{2x+1}-3\right)\left(\sqrt{x-2}+\sqrt{2}\right)}{x-4}

= \lim_{x\to 4} \frac{\left(\sqrt{2x+1}-3\right)\left(\sqrt{x-2}+\sqrt{2}\right)\left(\sqrt{2x+1}+3\right)}{(x-4)\left(\sqrt{2x+1}+3\right)}

= \lim_{x\to 4} \frac{\left(2x - 8\right)\left(\sqrt{x-2}+\sqrt{2}\right)}{(x-4)\left(\sqrt{2x+1}+3\right)}

Agora tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Calculo 1] Racionalizacao

Mensagempor gabriel feron » Seg Mai 14, 2012 19:05

Consegui aqui!!!! :D Obrigado!!!
gabriel feron
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Abr 16, 2012 03:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Hídrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.