por rafaelbr91 » Sáb Mai 12, 2012 19:32
Bem, eu queria saber como vou fazer o esboço gráfico da função f(x)= x³-2x+3x , o problema consiste no momento em que vou achar o ponto crítico da função, pois as raízes de f '(x), que corresponde à, 3x²-4x+3, são raízes complexas, dai eu n sei como representálas no gráfico( a dúvida é em relação a complexos então..), as raízes são : x' = 0,66 + 0,74.i e x" = 0,66 - 0,74.i Como represento elas graficamente? Agradecido.
-
rafaelbr91
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Mar 27, 2012 17:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Civil
- Andamento: cursando
por LuizAquino » Seg Mai 14, 2012 09:18
rafaelbr91 escreveu:Bem, eu queria saber como vou fazer o esboço gráfico da função f(x)= x³-2x+3x , o problema consiste no momento em que vou achar o ponto crítico da função, pois as raízes de f '(x), que corresponde à, 3x²-4x+3, são raízes complexas, dai eu n sei como representálas no gráfico( a dúvida é em relação a complexos então..), as raízes são : x' = 0,66 + 0,74.i e x" = 0,66 - 0,74.i Como represento elas graficamente? Agradecido.
Eu presumo que a função seja

e não

como você escreveu.
Você não tem que representar as raízes complexas. Lembre-se que o fato de uma função polinomial do 2° grau ter raízes complexas significa que seu gráfico não toca no eixo x. Ou seja, dependendo da concavidade da parábola (que representa o gráfico dessa função polinomial), irá ocorrer p(x) > 0 ou p(x) < 0 para todo x no domínio de p.
No caso, temos o polinômio

. Como suas raízes são complexas e a concavidade da parábola é para cima, temos que

para todo x.
Como a primeira derivada é sempre positiva, temos que o gráfico de
f é sempre crescente.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [CURVAS] Esboço da trajetória
por inkz » Ter Nov 20, 2012 01:14
- 2 Respostas
- 1759 Exibições
- Última mensagem por inkz

Ter Nov 20, 2012 01:52
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] esboço de gráfico
por beel » Ter Nov 01, 2011 16:16
- 1 Respostas
- 2064 Exibições
- Última mensagem por LuizAquino

Ter Nov 01, 2011 16:29
Cálculo: Limites, Derivadas e Integrais
-
- Esboco de gráfico com técnicas de calculo
por yagocipoli » Seg Jan 19, 2015 09:47
- 0 Respostas
- 1008 Exibições
- Última mensagem por yagocipoli

Seg Jan 19, 2015 09:47
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo vetorial. Curvas
por guilherme5088 » Ter Abr 06, 2021 11:34
- 8 Respostas
- 7123 Exibições
- Última mensagem por LuizAquino

Sex Abr 09, 2021 21:45
Cálculo: Limites, Derivadas e Integrais
-
- Esboço do gráfico
por Dan » Sex Out 02, 2009 09:07
- 1 Respostas
- 3517 Exibições
- Última mensagem por admin

Sex Out 02, 2009 09:26
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.