• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo da [continuidade] de uma função

Estudo da [continuidade] de uma função

Mensagempor Teh_eng » Qui Mai 03, 2012 13:43

Como faço o estudo da continuidade desta função, por função composta:

h(x)=\sqrt[]{4 - x^2}

sendo f(x)=\sqrt[]{x}, e g(x)={4 - x^2}

h(x)=(f o g)(x)=f(g(x))= f(4 - x²)= \sqrt[]{4 - x^2}

Dom.f(x)= \forall x \in R / x\geq 0
Dom.g(x)= R

sei que h(x) é continua no intervalo{ x \in R / -2\leq x \leq 2}
Mas como demonstrar?
Teh_eng
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 03, 2012 12:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Graduando em Eng. Elétrica
Andamento: cursando

Re: Estudo da [continuidade] de uma função

Mensagempor Russman » Qui Mai 03, 2012 14:52

A sua função h(x) é do tipo raíz par. Assim, para todo valor de x que provoque um radicando negativo esta função não se define.

Como
h(x) = \sqrt[]{4-{x}^{2}},

então 4 - {x}^{2}\geq 0.

Assim,

{x}^{2}\leq 4 \Rightarrow \sqrt[]{{x}^{2}} \leq \sqrt[]{4} \Rightarrow\left|x \right| \leq 2

e, portanto, a função h(x) é contínua para o intervalo \left|x \right| \leq 2 \Rightarrow  -2 \leq x \leq 2 \Rightarrow   x \in \left[-2,2 \right].
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.