por Henrique Bueno » Qui Abr 19, 2012 22:36
Prove que

Connsidere separadamente os casos em que a>0 , a<0 e a=0. (considere em sua prova 0<

<a²m quando

Eu consegui sem problemas fazer a demonstração com a=0, pois qualquer delta e qualquer epsilon irão permitir solucionar, então a solução fica facil... Porém quando se trata do a>0 e a<0 fica mto dificil. Depois de escolher um epsilon não consigo mostrar qual delta usar. Intuitivamente eu pegaria o delta que menos dista do ponto x=a, mas não consigo provar isso.
obrigado pela ajuda
-
Henrique Bueno
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Mar 02, 2011 19:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Qui Abr 19, 2012 23:38
Henrique Bueno escreveu:Prove que

Connsidere separadamente os casos em que a>0 , a<0 e a=0. (considere em sua prova 0<

<a²m quando

Eu consegui sem problemas fazer a demonstração com a=0, pois qualquer delta e qualquer epsilon irão permitir solucionar, então a solução fica facil... Porém quando se trata do a>0 e a<0 fica mto dificil. Depois de escolher um epsilon não consigo mostrar qual delta usar. Intuitivamente eu pegaria o delta que menos dista do ponto x=a, mas não consigo provar isso.
obrigado pela ajuda
Vide as ideias apontadas nesse tópico:
[Cálculo] Introduçãoviewtopic.php?f=120&t=7723
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Ajuda com demonstração
por ghf » Sex Nov 02, 2012 22:31
- 1 Respostas
- 1381 Exibições
- Última mensagem por MarceloFantini

Sex Nov 02, 2012 22:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limite do produto] Dúvida na demonstração
por BlackSabbathRules » Sex Mai 09, 2014 16:56
- 3 Respostas
- 2892 Exibições
- Última mensagem por e8group

Sáb Mai 10, 2014 15:23
Cálculo: Limites, Derivadas e Integrais
-
- limite: demonstração (acho que utiliza teorema do confronto)
por catabluma123 » Qua Fev 10, 2016 21:52
- 1 Respostas
- 1541 Exibições
- Última mensagem por adauto martins

Seg Fev 22, 2016 12:43
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Demonstração de um limite
por Fabio Marquez » Ter Mai 14, 2013 11:30
- 2 Respostas
- 1609 Exibições
- Última mensagem por Fabio Marquez

Ter Mai 14, 2013 23:55
Cálculo: Limites, Derivadas e Integrais
-
- DEMONSTRAÇÃO
por arima » Seg Nov 08, 2010 08:40
- 8 Respostas
- 5605 Exibições
- Última mensagem por roseli

Qua Nov 10, 2010 21:03
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 12:41
pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.
78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?
Assunto:
dúvida em uma questão em regra de 3!
Autor:
Douglasm - Qui Jul 01, 2010 13:16
Observe o raciocínio:
10 pessoas - 9 dias - 135 toneladas
1 pessoa - 9 dias - 13,5 toneladas
1 pessoa - 1 dia - 1,5 toneladas
40 pessoas - 1 dia - 60 toneladas
40 pessoas - 30 dias - 1800 toneladas
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:18
pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:21
leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
valeu meu camarada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.