• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Demonstração

[Limite] Demonstração

Mensagempor Henrique Bueno » Qui Abr 19, 2012 22:36

Prove que

\lim _{x \to a} x^2=a^2

Connsidere separadamente os casos em que a>0 , a<0 e a=0. (considere em sua prova 0<\epsilon<a²m quando a \ne 0

Eu consegui sem problemas fazer a demonstração com a=0, pois qualquer delta e qualquer epsilon irão permitir solucionar, então a solução fica facil... Porém quando se trata do a>0 e a<0 fica mto dificil. Depois de escolher um epsilon não consigo mostrar qual delta usar. Intuitivamente eu pegaria o delta que menos dista do ponto x=a, mas não consigo provar isso.

obrigado pela ajuda
Henrique Bueno
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 02, 2011 19:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Limite] Demonstração

Mensagempor LuizAquino » Qui Abr 19, 2012 23:38

Henrique Bueno escreveu:Prove que

\lim _{x \to a} x^2=a^2

Connsidere separadamente os casos em que a>0 , a<0 e a=0. (considere em sua prova 0<\epsilon<a²m quando a \ne 0

Eu consegui sem problemas fazer a demonstração com a=0, pois qualquer delta e qualquer epsilon irão permitir solucionar, então a solução fica facil... Porém quando se trata do a>0 e a<0 fica mto dificil. Depois de escolher um epsilon não consigo mostrar qual delta usar. Intuitivamente eu pegaria o delta que menos dista do ponto x=a, mas não consigo provar isso.

obrigado pela ajuda


Vide as ideias apontadas nesse tópico:

[Cálculo] Introdução
viewtopic.php?f=120&t=7723
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.