por -civil- » Qua Abr 18, 2012 00:12
Estou tentando resolver essa integral:

mas nada dá certo.
Pensei em trocar a ordem, mas eu vou ter os mesmo problemas. Se eu decidir fazer substituição de

por u mas eu teria que colocar na integral a derivada de u (du), que vai dar algo muito mais complicado. No wolframalpha eu vi umas coisas de integral exponencial (Ei) mas não faço a menor ideia do que isso seja. Alguém tem uma sugestão?
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por DanielFerreira » Qua Abr 18, 2012 22:33
-civil-,
dê uma olhada na parte de Mudança de Variável
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por -civil- » Ter Abr 24, 2012 18:45
Pois é, eu tinha aprendido mas só usava quando as equações formavam retas. Só agora percebi que nesse caso eu também posso usar mudança de variável e calcular o jacobiano.
Obrigada pela dica
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por DanielFerreira » Ter Abr 24, 2012 20:19
E aí, como ficou sua resposta?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral com exponencial
por suziquim » Ter Mai 10, 2011 18:07
- 2 Respostas
- 3218 Exibições
- Última mensagem por suziquim

Qua Mai 11, 2011 11:08
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Exponencial
por raulalves_ » Qua Abr 18, 2012 01:49
- 1 Respostas
- 1657 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 14:59
Cálculo: Limites, Derivadas e Integrais
-
- (integral) função exponencial
por manuel_pato1 » Sex Dez 07, 2012 20:08
- 6 Respostas
- 3844 Exibições
- Última mensagem por manuel_pato1

Sáb Dez 08, 2012 15:02
Cálculo: Limites, Derivadas e Integrais
-
- [dúvida] integral exponencial Ei(z)?
por Jasbinschek » Qua Mai 29, 2013 01:17
- 2 Respostas
- 1869 Exibições
- Última mensagem por Jasbinschek

Qua Mai 29, 2013 20:11
Cálculo: Limites, Derivadas e Integrais
-
- integral de função exponencial
por vivima » Sex Mai 09, 2014 13:36
- 2 Respostas
- 2006 Exibições
- Última mensagem por vivima

Sex Mai 09, 2014 15:19
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.