• Anúncio Global
    Respostas
    Exibições
    Última mensagem

consigo fazer tudo e sempre enrosco no final.

consigo fazer tudo e sempre enrosco no final.

Mensagempor ricardosanto » Ter Abr 17, 2012 22:34

busquei a ajuda desse fórum, pelo motivo de o meu pro ñ ajudar na resolução de questões.
foi no meu ultimo post q o LuizAquino(obrigado meu irmão) me mandou um site q está me ajudando muito, mas mesmo assim, ele não resolveu completamente o meu problema. que é quando se aplica todas as regras de derivação daí devemos simplificar.
Imagem
tipo a resolução assimaeu consigo entender até em E^x x³ e^x(3x²)
como que ele transforma isto em e^x x²(x+3)?
desde já obrigado.
ricardosanto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Seg Abr 16, 2012 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: consigo fazer tudo e sempre enrosco no final.

Mensagempor TheoFerraz » Ter Abr 17, 2012 23:42

ele está só colocando em evidência...

concorda que:

c \times a + c \times b =c \times (a + b)

então... é o mesmo... que primeiro é feito com o {e}^{x} e depois com o {x}^{2}

observe:

{e}^{x} {x}^{3} + {e}^{x} 3 {x}^{2} = {e}^{x}({x}^{3} + 3{x}^{2})

Tudo bem até ai? então, agora pense no {x}^{3} como sendo x \times {x}^{2}

{e}^{x}({x}^{3} + 3{x}^{2}) = {e}^{x}({x}^{2}x + 3{x}^{2}) = {e}^{x} {x}^{2} ( x + 3)
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.