• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] integral dupla

[Integral] integral dupla

Mensagempor -civil- » Seg Abr 09, 2012 23:52

Calcular \int \int \limits_{B} f(x,y) dx dy

Sendo que f(x,y) = cos(2y).\sqrt{4 - (senx)^2} e B é o triângulo de vértices (0,0), (0, \pi/2) e (\pi/2,\pi/2).


Bom eu estou tentando e não chego a lugar nenhum. Pensei em integrar primeiro em relação a x e resolver por substituição mas não deu certo. Tentei integrar primeiro em relação a y e chego a uma integral que eu não sei mais como desenvolver:

\int \int \limits_{0}^{\pi/2} \frac{-1}{2}sen(2x)\sqrt{4 - (senx)^2}dx

Obrigada pela ajuda!
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] integral dupla

Mensagempor LuizAquino » Ter Abr 10, 2012 11:18

-civil- escreveu:Calcular \int \int \limits_{B} f(x,y) dx dy

Sendo que f(x,y) = cos(2y).\sqrt{4 - (senx)^2} e B é o triângulo de vértices (0,0), (0, \pi/2) e (\pi/2,\pi/2).



-civil- escreveu:Bom eu estou tentando e não chego a lugar nenhum. Pensei em integrar primeiro em relação a x e resolver por substituição mas não deu certo. Tentei integrar primeiro em relação a y e chego a uma integral que eu não sei mais como desenvolver:

\int \int \limits_{0}^{\pi/2} \frac{-1}{2}sen(2x)\sqrt{4 - (senx)^2}dx


Tem apenas um erro de digitação. Você colocou um símbolo a mais de integral. O correto seria:

\int_0^\frac{\pi}{2} -\frac{1}{2}\,\textrm{sen}\,2x \sqrt{4 - \, \textrm{sen}^2\, x}\, dx

Para continuar a resolução, use a substituição u = 4 - \textrm{sen}^2\, x .

Além disso, lembre-se da seguinte identidade trigonométrica:

\textrm{sen}\,2\alpha = 2\,\textrm{sen}\,\alpha \cos \alpha
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: