• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] integral dupla

[Integral] integral dupla

Mensagempor -civil- » Seg Abr 09, 2012 23:52

Calcular \int \int \limits_{B} f(x,y) dx dy

Sendo que f(x,y) = cos(2y).\sqrt{4 - (senx)^2} e B é o triângulo de vértices (0,0), (0, \pi/2) e (\pi/2,\pi/2).


Bom eu estou tentando e não chego a lugar nenhum. Pensei em integrar primeiro em relação a x e resolver por substituição mas não deu certo. Tentei integrar primeiro em relação a y e chego a uma integral que eu não sei mais como desenvolver:

\int \int \limits_{0}^{\pi/2} \frac{-1}{2}sen(2x)\sqrt{4 - (senx)^2}dx

Obrigada pela ajuda!
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] integral dupla

Mensagempor LuizAquino » Ter Abr 10, 2012 11:18

-civil- escreveu:Calcular \int \int \limits_{B} f(x,y) dx dy

Sendo que f(x,y) = cos(2y).\sqrt{4 - (senx)^2} e B é o triângulo de vértices (0,0), (0, \pi/2) e (\pi/2,\pi/2).



-civil- escreveu:Bom eu estou tentando e não chego a lugar nenhum. Pensei em integrar primeiro em relação a x e resolver por substituição mas não deu certo. Tentei integrar primeiro em relação a y e chego a uma integral que eu não sei mais como desenvolver:

\int \int \limits_{0}^{\pi/2} \frac{-1}{2}sen(2x)\sqrt{4 - (senx)^2}dx


Tem apenas um erro de digitação. Você colocou um símbolo a mais de integral. O correto seria:

\int_0^\frac{\pi}{2} -\frac{1}{2}\,\textrm{sen}\,2x \sqrt{4 - \, \textrm{sen}^2\, x}\, dx

Para continuar a resolução, use a substituição u = 4 - \textrm{sen}^2\, x .

Além disso, lembre-se da seguinte identidade trigonométrica:

\textrm{sen}\,2\alpha = 2\,\textrm{sen}\,\alpha \cos \alpha
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.