• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada

derivada

Mensagempor profmatematica » Qui Mar 29, 2012 13:27

Calcule a derivada de y=x/3x^2+5
eu fiz a derivada aplicando a regra do quociente e encontrei 3x^2-5/ (3x^2+5)^2 pela lógica o resultado teria que simplificar mas todo jeito que faz fico nisso aqui. Alguém pode me auxiliar?
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: derivada

Mensagempor LuizAquino » Qui Mar 29, 2012 15:05

profmatematica escreveu:Calcule a derivada de y=x/3x^2+5


Primeiro, o que você escreveu é equivalente a:

y = \dfrac{x}{3x^2} + 5

Entretanto, ao que parece o exercício original seria:

y = \dfrac{x}{3x^2 + 5}

Para escrever algo desse tipo, você deveria ter usado algo como:

y = x/(3x^2 + 5)

Note a importância do uso adequado dos parênteses!

profmatematica escreveu:eu fiz a derivada aplicando a regra do quociente e encontrei 3x^2-5/ (3x^2+5)^2 pela lógica o resultado teria que simplificar mas todo jeito que faz fico nisso aqui. Alguém pode me auxiliar?


Essa não é a reposta correta.

Note que:

y^\prime = \dfrac{(x)^\prime \left(3x^2 + 5\right) - (x) \left(3x^2 + 5\right)^\prime}{\left(3x^2 + 5\right)^2}

= \dfrac{3x^2 + 5 - 6x^2}{\left(3x^2 + 5\right)^2}

= \dfrac{-3x^2 + 5}{\left(3x^2 + 5\right)^2}

Como não há o que simplificar, a reposta final é:

y^\prime = \dfrac{-3x^2 + 5}{\left(3x^2 + 5\right)^2}

Observação

Por favor, vide a Regra 2 deste fórum:

viewtopic.php?f=9&t=7543
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: derivada

Mensagempor profmatematica » Qui Mar 29, 2012 15:11

Valeu mesmo obrigada
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: derivada dúvida na resposta

Mensagempor profmatematica » Qui Mar 29, 2012 22:22

Luiz a fórmula do quociente não é o contrário? Escreve o primeiro deriva o segundo menos escreve o segundo e deriva o primeiro?
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: derivada

Mensagempor profmatematica » Qui Mar 29, 2012 22:28

gente eu derivei as de quociente tudo ao contrário então misericórdia
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: derivada

Mensagempor profmatematica » Qui Mar 29, 2012 22:33

Gente esse site é o céu Deus abençoe vocês
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59