• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como terminar essa aplicação de limite?

Como terminar essa aplicação de limite?

Mensagempor samra » Qui Mar 29, 2012 22:11

\lim_{x->1}(5x+4)=9
resolvendo fica assim ó:
|f(x)-L|<\epsilon \Leftrightarrow 0<|x-a|<\delta
|3x+1+5|<\epsilon
|3x+6|<\epsilon
3|x+2|<\epsilon

|x+2|<\frac{\epsilon}{3}

0<|x-a|<\delta
portanto:
\delta=\frac{\epsilon}{3}

Depois disso, meu professor faz mais alguma coisa que ele chega numa conclusão qe
\epsilon=\delta , e ele disse que só essa forma acima não está totalmente certo, pq ainda não foi provado que o limite existe, pois só é provado qdo \epsilon=\delta
alguem sabe como fazê-lo?
Se sim, coloke o passo a passo com explicação do jeito que eu consiga entender (ainda sou um pouco leiga em limites, principalmente na definição formal)
obg ^^
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Como terminar essa aplicação de limite?

Mensagempor LuizAquino » Sex Mar 30, 2012 19:40

samra escreveu:\lim_{x->1}(5x+4)=9

resolvendo fica assim ó:
|f(x)-L|<\epsilon \Leftrightarrow 0<|x-a|<\delta
|3x+1+5|<\epsilon
|3x+6|<\epsilon
3|x+2|<\epsilon

|x+2|<\frac{\epsilon}{3}

0<|x-a|<\delta
portanto:
\delta=\frac{\epsilon}{3}


A sua resolução está errada.

Vejamos a definição formal de limite.

Dizemos que \lim_{x\to c} f(x) = L quando temos que: dado \varepsilon > 0 existe \delta > 0 tal que 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon .

No exercício, temos o limite:

\lim_{x\to 1} 5x+4 = 9

Precisamos então provar que: dado \varepsilon > 0 existe \delta > 0 tal que 0 < |x - 1| < \delta \Rightarrow |(5x + 4) - 9| < \varepsilon .

Começando pela segunda inequação, temos que:

|(5x + 4) - 9| < \varepsilon

|5x - 5| < \varepsilon

5|x - 1| < \varepsilon

|x - 1| < \dfrac{\varepsilon}{5}

Portanto, na definição formal devemos tomar \delta = \frac{\varepsilon}{5} . Isto é, dado \varepsilon > 0 fazendo \delta = \frac{\varepsilon}{5} temos que 0 < |x - 1| < \delta \Rightarrow |(5x + 4) - 9| < \varepsilon .

Vamos agora verificar que essa escolha de \delta está correta. Ou seja, vamos verificar que para essa escolha temos que: 0 < |x - 1| < \delta \Rightarrow |(5x + 4) - 9| < \varepsilon .

|x - 1| < \delta

|x - 1| < \dfrac{\varepsilon}{5}

5|x - 1| < \varepsilon

|5x - 5| < \varepsilon

|(5x + 4) - 9| < \varepsilon

Com isso provamos que:

\lim_{x\to 1} 5x + 4 = 9

samra escreveu:Depois disso, meu professor faz mais alguma coisa que ele chega numa conclusão qe
\epsilon=\delta , e ele disse que só essa forma acima não está totalmente certo, pq ainda não foi provado que o limite existe, pois só é provado qdo \epsilon=\delta


Você deve estar confundindo a explicação dada. No caso desse exercício que você enviou, não vamos obter que \delta = \varepsilon .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Como terminar essa aplicação de limite?

Mensagempor samra » Sex Mar 30, 2012 20:50

Nooh, descupa, eu postei errado o limite :$
é esse akió \lim_{x\rightarrow -2} 3x+1=-5

a resolução que eu fiz foi referente ao limite acima :(

se levado em consideração o \lim_{x\rightarrow -2} 3x+1=-5
minha resolução está certa ou não? :idea:

Obrigada!
"sábio é aquele que conhece os limites da própria ignorância" Sócrates
samra
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sex Jan 27, 2012 11:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Informatica
Andamento: formado

Re: Como terminar essa aplicação de limite?

Mensagempor fraol » Sáb Mar 31, 2012 00:16

No caso dessa última função que você apresentou, seu

\delta = \frac{\epsilon}{3}

está correto. Contudo, a demonstração deveria seguir o modelo daquela apresentada acima pelo colega LuizAquino.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59