• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral - onde errei?

Integral - onde errei?

Mensagempor dina ribeiro » Sex Mar 23, 2012 21:03

Boa noite!!!

Resolvi a integral indeterminada abaixo mas quando olhei resolução do livro vi que final está diferente. Não consigo enxergar de onde saiu a última parte que diz que o resultado é 0. Não seria 1 ?!

\int_{1}^{\propto}\frac{lnx}{{x}^{2}}dx
=lim(t\rightarrow\propto) \int_{1}^{\propto}\frac{lnx}{{x}^{2}}dx
=lim(t\rightarrow\propto) \left[-\frac{lnx}{x}-\frac{1}{x} \right]
=lim(t\rightarrow\propto)\left(-\frac{lnt}{t}-\frac{1}{t}+0+1 \right)
=-0-0+0+1=1 CONVERGE


Essa próxima parte não entendi:
=lim(t\rightarrow\propto)\frac{lnt}{t}
=lim(t\rightarrow\propto)\frac{1/t}{1}=0
CONVERGE


Grata
dina ribeiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Mar 15, 2012 19:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral - onde errei?

Mensagempor MarceloFantini » Sex Mar 23, 2012 21:10

Dina, crie sempre novos tópicos para suas dúvidas. Isto ajuda a manter o fórum organizado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.