por CaioLemos » Qui Mar 22, 2012 13:18
Bom dia rapaziada, sou novo no forum e nao sei muito bem como editar as formulas, mas acho que dá para entender:
1-Determine o valor da constante C para que F seja continua em [0,

)
![f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1 f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1](/latexrender/pictures/39e46eb54f0ef49ad0383fcd1334a2c1.png)

<=,=> Querem dizer maior ou igual
Bom, a minha dúvida é a seguinte: No primeiro momento, eu igualei a f(x)

substituio x por 1para achar f(1), porem quando vo fazer o limite da
![f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1 f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1](/latexrender/pictures/39e46eb54f0ef49ad0383fcd1334a2c1.png)
com X tendendo a 1, caio numa indeterminação 0/0. Minha idéia era achar o valor do limite
![f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1 f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1](/latexrender/pictures/39e46eb54f0ef49ad0383fcd1334a2c1.png)
com X tendendo a 1 e dps igualar a F(1) para achar o C
Queria saber se o meu pensamento está correto e como sair da indeterminação
Obrigado
-
CaioLemos
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mar 22, 2012 13:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Qui Mar 22, 2012 15:59
CaioLemos escreveu:1-Determine o valor da constante C para que F seja continua em [0,

)
![f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1 f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1](/latexrender/pictures/39e46eb54f0ef49ad0383fcd1334a2c1.png)

<=,=> Querem dizer maior ou igual
O que você escreveu é equivalente a:

Mas eu presumo que a função original seja:

Se você desejava escrever algo assim, você deveria ter usado algo como:

, se 0<= x <1

, se x =>1
Note a importância do uso adequado dos parênteses!
CaioLemos escreveu:Bom, a minha dúvida é a seguinte: No primeiro momento, eu igualei a f(x)

substituio x por 1 para achar f(1), porem quando vo fazer o limite da
![f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1 f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1](/latexrender/pictures/39e46eb54f0ef49ad0383fcd1334a2c1.png)
com X tendendo a 1, caio numa indeterminação 0/0. Minha idéia era achar o valor do limite
![f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1 f(x)= (\!x+\sqrt[2]{x}-2)/x-1 , se \:x<=x<1](/latexrender/pictures/39e46eb54f0ef49ad0383fcd1334a2c1.png)
com X tendendo a 1 e dps igualar a F(1) para achar o C
Queria saber se o meu pensamento está correto e como sair da indeterminação
Temos que:

Desejamos determinar c de tal modo que:

Nós já temos que:

Falta agora:

Desejamos então que:

Há várias formas de resolver esse limite. Uma delas é usando a substituição

. Desse modo, quando

temos que

. Podemos então reescrever esse limite como:

Fatorando os polinômios que aparecem no numerador e no denominador, temos que:



Agora basta terminar o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por CaioLemos » Qui Mar 22, 2012 17:39
LuizAquino obrigado pela resposta. Estava precisando dessa ajuda, obrigado mesmo!
-
CaioLemos
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mar 22, 2012 13:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite Continuidade
por Claudin » Sáb Out 01, 2011 11:33
- 10 Respostas
- 5451 Exibições
- Última mensagem por Claudin

Seg Out 03, 2011 10:37
Cálculo: Limites, Derivadas e Integrais
-
- Limite e Continuidade
por Thyago Quimica » Seg Mai 21, 2012 14:11
- 1 Respostas
- 1557 Exibições
- Última mensagem por LuizAquino

Ter Mai 22, 2012 19:22
Cálculo: Limites, Derivadas e Integrais
-
- Limite e Continuidade
por Raquel299 » Sex Abr 10, 2015 10:43
- 2 Respostas
- 1708 Exibições
- Última mensagem por Raquel299

Ter Abr 14, 2015 18:17
Cálculo: Limites, Derivadas e Integrais
-
- Limite e Continuidade
por Raquel299 » Ter Abr 14, 2015 20:58
- 1 Respostas
- 1376 Exibições
- Última mensagem por Cleyson007

Qua Abr 15, 2015 18:26
Cálculo: Limites, Derivadas e Integrais
-
- Limite- Continuidade em intervalos
por killerkill » Sáb Ago 13, 2011 02:25
- 7 Respostas
- 7652 Exibições
- Última mensagem por killerkill

Qua Ago 17, 2011 23:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.