• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguem pode me ajudar com este exercício?

Alguem pode me ajudar com este exercício?

Mensagempor phvicari » Sáb Fev 18, 2012 16:19

Olá, pessoal, estou com um exercício na mão aqui envolvendo função logarítimica, alguem poderia me ajudar com a parte inicial dele?

Aqui vai:

Considere a curva y=2 ln(x), onde "l" é a reta que passa pela origem e é tangente à curva no ponto "P". Considere também uma reta qualquer "m", perpendicular a "l" no ponto de tangencia "P".

Pergunta: Considerando que a cordenada x de P (Px) seja "t", o valor de ln (t) é?


PS: A resposta é que "t" vale e, portanto ln (t) é 1, mas não consigo de forma alguma chegar nesse valor para "t", alguem poderia me ajudar?
phvicari
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Set 03, 2011 04:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando

Re: Alguem pode me ajudar com este exercício?

Mensagempor LuizAquino » Sáb Fev 18, 2012 17:31

phvicari escreveu:Considere a curva y=2 \ln(x), onde "l" é a reta que passa pela origem e é tangente à curva no ponto "P". Considere também uma reta qualquer "m", perpendicular a "l" no ponto de tangencia "P".

Pergunta: Considerando que a cordenada x de P (Px) seja "t", o valor de ln (t) é?


Sabemos que a reta tangente a função f(x) no ponto P=(t, f(t)) é dada por:

y - f(t) = f^{\prime}(t)(x - t)

Como deseja-se que essa reta passe pela origem, o ponto x=0 e y=0 deve satisfazer essa equação. Ou seja, devemos ter:

- f(t) = -tf^{\prime}(t)

No exercício, temos que f(x)=2\ln x . Lembrando que f^\prime(x) = \frac{2}{x} , temos que a equação anterior será equivalente a:

- 2\ln t = - t\left(\frac{2}{t}\right)

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Alguem pode me ajudar com este exercício?

Mensagempor phvicari » Sáb Fev 18, 2012 23:12

Professor LuizAquino, muito abrigado pela ajuda, consegui terminar o exercício e entendi perfeitamente a explicação.

Abraços.
phvicari
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Set 03, 2011 04:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: