• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguem pode me ajudar com este exercício?

Alguem pode me ajudar com este exercício?

Mensagempor phvicari » Sáb Fev 18, 2012 16:19

Olá, pessoal, estou com um exercício na mão aqui envolvendo função logarítimica, alguem poderia me ajudar com a parte inicial dele?

Aqui vai:

Considere a curva y=2 ln(x), onde "l" é a reta que passa pela origem e é tangente à curva no ponto "P". Considere também uma reta qualquer "m", perpendicular a "l" no ponto de tangencia "P".

Pergunta: Considerando que a cordenada x de P (Px) seja "t", o valor de ln (t) é?


PS: A resposta é que "t" vale e, portanto ln (t) é 1, mas não consigo de forma alguma chegar nesse valor para "t", alguem poderia me ajudar?
phvicari
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Set 03, 2011 04:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando

Re: Alguem pode me ajudar com este exercício?

Mensagempor LuizAquino » Sáb Fev 18, 2012 17:31

phvicari escreveu:Considere a curva y=2 \ln(x), onde "l" é a reta que passa pela origem e é tangente à curva no ponto "P". Considere também uma reta qualquer "m", perpendicular a "l" no ponto de tangencia "P".

Pergunta: Considerando que a cordenada x de P (Px) seja "t", o valor de ln (t) é?


Sabemos que a reta tangente a função f(x) no ponto P=(t, f(t)) é dada por:

y - f(t) = f^{\prime}(t)(x - t)

Como deseja-se que essa reta passe pela origem, o ponto x=0 e y=0 deve satisfazer essa equação. Ou seja, devemos ter:

- f(t) = -tf^{\prime}(t)

No exercício, temos que f(x)=2\ln x . Lembrando que f^\prime(x) = \frac{2}{x} , temos que a equação anterior será equivalente a:

- 2\ln t = - t\left(\frac{2}{t}\right)

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Alguem pode me ajudar com este exercício?

Mensagempor phvicari » Sáb Fev 18, 2012 23:12

Professor LuizAquino, muito abrigado pela ajuda, consegui terminar o exercício e entendi perfeitamente a explicação.

Abraços.
phvicari
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Set 03, 2011 04:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino Médio
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.