• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] - Questões teóricas 2

[Limites] - Questões teóricas 2

Mensagempor Scheu » Sex Fev 03, 2012 00:32

Desculpem postar uma nova pegunta, mas é que essas questões estão tirando meu sono. Nos exercícios que estou estudando tem a seguinte questão: Demostre que \lim_{x\rightarrow a}\left[f(x)+g(x) \right] pode existir, mesmo que \lim_{x\rightarrow a}f(x) e \lim_{x\rightarrow a}g(x) não existam. Minha duvida esta se essa preposição é realmente verdadeira? Por quê? Mais uma vez obrigada.
Scheu
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Fev 01, 2012 23:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: [Limites] - Questões teóricas 2

Mensagempor LuizAquino » Sex Fev 03, 2012 00:58

Scheu escreveu:Nos exercícios que estou estudando tem a seguinte questão: Demostre que \lim_{x\rightarrow a}\left[f(x)+g(x) \right] pode existir, mesmo que \lim_{x\rightarrow a}f(x) e \lim_{x\rightarrow a}g(x) não existam. Minha duvida esta se essa preposição é realmente verdadeira? Por quê?


Em alguns casos a resposta é sim: o limite dessa soma pode existir mesmo que o limite de cada parcela não exista.

Exemplo

Considere as funções:

f(x) = \begin{cases} -1,\textrm{ se }x < 0 \\ 1,\textrm{ se }x \geq 0 \end{cases}

g(x) = \begin{cases} 3,\textrm{ se }x < 0 \\ 1,\textrm{ se }x \geq 0 \end{cases}

Note que \lim_{x\to 0} f(x) e \lim_{x\to 0}g(x) não existem (já que os seus limites laterais são distintos).

Por outro lado, temos que:

\lim_{x\to 0} [f(x) + g(x)] = \lim_{x\to 0} 2 = 2

Portanto, obtemos que \lim_{x\to 0} [f(x) + g(x)] existe.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}