por luiz_henriquear » Sáb Dez 31, 2011 14:35

tenho que resolver essa integral. Tentei a ajuda do wolframalpha, porém lá não se resolve por partes. Espero que possam ajudar
-
luiz_henriquear
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Seg Out 24, 2011 20:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: engenharia civil
- Andamento: cursando
por LuizAquino » Sáb Dez 31, 2011 14:58
luiz_henriquear escreveu:
tenho que resolver essa integral.
Usando

,

,

e

temos que:

Usando

,

,

e

temos que:


![\int e^x \cos \left(\frac{x}{2}\right)\,dx = \frac{2}{5}e^x\left[\textrm{sen}\,\left(\frac{x}{2}\right) + 2\cos \left(\frac{x}{2}\right)\right] + c \int e^x \cos \left(\frac{x}{2}\right)\,dx = \frac{2}{5}e^x\left[\textrm{sen}\,\left(\frac{x}{2}\right) + 2\cos \left(\frac{x}{2}\right)\right] + c](/latexrender/pictures/514dc1d1a77a2d12faf954718e5d6cc7.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por luiz_henriquear » Sáb Dez 31, 2011 15:08
Vlw cara. Muito fácil kkkk(pra quem sabe)
-
luiz_henriquear
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Seg Out 24, 2011 20:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: engenharia civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integração por Partes] Integral indefinida...
por luiz_henriquear » Qui Dez 22, 2011 17:40
- 1 Respostas
- 3604 Exibições
- Última mensagem por LuizAquino

Qui Dez 22, 2011 21:58
Cálculo: Limites, Derivadas e Integrais
-
- [Integral Indefinida] Método por Partes
por Matheus Lacombe O » Sex Mar 29, 2013 18:12
- 5 Respostas
- 2758 Exibições
- Última mensagem por young_jedi

Sáb Mar 30, 2013 21:33
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integração por partes
por bencz » Sex Abr 22, 2016 16:18
- 1 Respostas
- 3591 Exibições
- Última mensagem por nakagumahissao

Sáb Abr 23, 2016 23:33
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL INDEFINIDA] Duvida de integração
por fabriel » Qua Out 03, 2012 16:20
- 3 Respostas
- 1902 Exibições
- Última mensagem por fabriel

Qua Out 03, 2012 17:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Duvida na integração Por partes
por fabriel » Sáb Out 06, 2012 18:56
- 1 Respostas
- 1485 Exibições
- Última mensagem por MarceloFantini

Sáb Out 06, 2012 19:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.