• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[cálculo] integração por frações simples

[cálculo] integração por frações simples

Mensagempor procyon » Seg Nov 21, 2011 18:53

Olá pessoal,
Estou com dúvidas no seguinte exerc?cio:
\int{\frac{x^4 +2x -6}{x^3 + x^2 -2x}}
Tentei fazer o seguinte:
\int_{\frac{x^4 + 2x -6}{x(x-1)(x+2)} \equiv \frac{A}{x} + \frac{B}{(x-1)} + \frac{C}{(x-2)}}
= x²(A + B +C) +x(-3A -2B -C) +2A
2A = -6
A = -3
B = 2
C = 1

= \frac{-3}{x} + \frac{2}{x-1} + \frac{1}{x-2}
= -3\ln{x} + 2\ln{(x-1)} + \ln{(x-2)} + C

Mas a resposta dá:

\frac{x^2}{2} -x +\ln{\frac{x^3(x+2)}{(x-1)}} + C

A parte do logaritmo está igual mas falta essa parte do x ao quadrado sobre dois - x. Isso deve ser uma primitiva de x (que dá: x^2/2) - primitiva de -1 ( que dá -x). Não sei como isso vai parar no resultado mas acredito que seja algo relacionado ao x na quarta potência que eu ignorei para achar o valor de A, preferi encontrar o A a partir da igualdade com o termo independente do numerador.

Onde está o meu erro?

Obrigado!
procyon
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 31, 2011 23:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [cálculo] integração por frações simples

Mensagempor MarceloFantini » Seg Nov 21, 2011 20:07

Você deve fazer a divisão polinomial para que o grau do numerador seja menor que do denominador, e depois usar frações parciais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [cálculo] integração por frações simples

Mensagempor LuizAquino » Seg Nov 21, 2011 20:57

procyon escreveu:Onde está o meu erro?


Como já apontou o colega Fantini, note que o grau do polinômio no numerador está maior do que o grau do polinômio no denominador.

Eu recomendo que você veja o Exemplo 2 da vídeo aula "29. Cálculo I - Integração por Frações Parciais (Caso I e II)". Ele é semelhante ao exercício que você está resolvendo.

Esta vídeo aula está disponível no meu canal no YouTube:

http://www.youtube.com/LCMAquino
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.