por carvalhothg » Sáb Nov 05, 2011 22:17
Alguém pode me ajudar a resolver este exercício por favor, estou com muita dificuldade.
Sendo
![y = ln[arctg(t)] y = ln[arctg(t)]](/latexrender/pictures/1455214dbeec834912ca90018a6dc0ff.png)
, t = u² e x = u + 2 , calcule
![\frac{dy}{dx}, para, x =\sqrt[]{3} \frac{dy}{dx}, para, x =\sqrt[]{3}](/latexrender/pictures/b1fb69dd89594c9261135a8177e93990.png)
-
carvalhothg
- Usuário Dedicado

-
- Mensagens: 42
- Registrado em: Dom Set 04, 2011 18:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [ Derivada ] Ajudem-me POR FAVOR
por Rendeiro » Dom Fev 19, 2012 18:00
- 5 Respostas
- 2291 Exibições
- Última mensagem por LuizAquino

Seg Fev 20, 2012 12:11
Cálculo: Limites, Derivadas e Integrais
-
- Calculo sem derivada, me ajudem a resolver por favor
por roberta emiliano » Qua Nov 28, 2012 11:54
- 2 Respostas
- 2459 Exibições
- Última mensagem por roberta emiliano

Qua Nov 28, 2012 14:58
Geometria Analítica
-
- Me ajudem por favor.
por diegodalcol » Qui Mai 22, 2008 13:26
- 4 Respostas
- 4821 Exibições
- Última mensagem por admin

Qui Mai 22, 2008 16:33
Funções
-
- Por favor, ajudem-me!
por hindu » Qua Set 23, 2009 23:08
- 4 Respostas
- 4552 Exibições
- Última mensagem por Lucas Avilez

Ter Out 06, 2009 20:36
Cálculo: Limites, Derivadas e Integrais
-
- M ajudem por favor!!
por Biacbd » Seg Jan 18, 2010 15:39
- 0 Respostas
- 3383 Exibições
- Última mensagem por Biacbd

Seg Jan 18, 2010 15:39
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.