• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Por favor me ajudem

[Derivada] Por favor me ajudem

Mensagempor carvalhothg » Sáb Nov 05, 2011 22:17

Alguém pode me ajudar a resolver este exercício por favor, estou com muita dificuldade.

Sendo y = ln[arctg(t)], t = u² e x = u + 2 , calcule \frac{dy}{dx}, para,  x =\sqrt[]{3}
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Derivada] Por favor me ajudem

Mensagempor LuizAquino » Ter Nov 08, 2011 00:34

carvalhothg escreveu:Alguém pode me ajudar a resolver este exercício por favor, estou com muita dificuldade.

Sendo y = \ln(\textrm{arctg}\, t), t = u² e x = u + 2 , calcule \frac{dy}{dx}, para,  x =\sqrt[]{3}


Pela Regra da Cadeia, temos que:

y = \ln[\textrm{arctg}\, (x-2)^2]

y^\prime = \frac{1}{\textrm{arctg}\, (x-2)^2}\cdot \left[\textrm{arctg}\, (x-2)^2\right]^\prime

y^\prime = \frac{1}{\textrm{arctg}\, (x-2)^2}\cdot \frac{1}{1+(x-2)^4}\cdot \left[(x-2)^2\right]^\prime

y^\prime = \frac{1}{\textrm{arctg}\, (x-2)^2}\cdot \frac{1}{1+(x-2)^4}\cdot [2(x-2)]\cdot (x-2)^\prime

y^\prime = \frac{1}{\textrm{arctg}\, (x-2)^2}\cdot \frac{1}{1+(x-2)^4}\cdot [2(x-2)] \cdot (1)

Agora termine o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.