• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor jr_freitas » Seg Out 31, 2011 14:02

Boa tarde!
Podem me ajudar no seguinte exercício de integral?
\int u^1^,^1\left(1/3u-1 \right)du
Eu consigo chegar até essa parte, depois não sei o que faço:
\int u^2^,^1/2,1 \left(1/3 * 1/u - 1 \right)du, estou fazendo errado?...por favor me expliquem!
Obrigado!
jr_freitas
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Out 06, 2011 10:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecnólogo em Análise de Sistemas
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Seg Out 31, 2011 15:05

Freitas, não é possível entender qual é a integral a ser calculada. Para utilizar fração, use o comando
Código: Selecionar todos
\frac{a}{b}
e o resultado será \frac{a}{b}. Para fazer um produto, use
Código: Selecionar todos
c \cdot d
e aparecerá c \cdot d.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral

Mensagempor jr_freitas » Seg Out 31, 2011 15:49

Ok! Desculpe.
Não consigo resolver o seguinte exercício de Integral:
\int u^1^,^1\left(\frac{1}{3u}-1\right)du
Eu consigo chegar até essa parte, depois não sei o que faço:
\int\frac{u^2^,^1}{2,1} \left(\frac{1}{3}*\frac{1}{u}-1\right)du, (não sei se está certo).
Obrigado pela ajuda!
jr_freitas
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Out 06, 2011 10:28
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecnólogo em Análise de Sistemas
Andamento: cursando

Re: Integral

Mensagempor MarceloFantini » Seg Out 31, 2011 16:07

Se você aplicar a distributiva, verá que a integral fica \int u^{0,1} - u^{1,1} \, \textrm{d}u = \int u^{0,1} \, \textrm{d}u - \int u^{1,1} \, \textrm{d}u = \frac{u^{1,1}}{1,1} + \frac{u^{2,1}}{2,1} + C. É isso? Ainda não entendo porque apareceria um expoente fracionário.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integral

Mensagempor procyon » Ter Nov 01, 2011 00:16

\int u^{1,1}. \left( \frac{1}{3u} -1 \right).du \\
\\
\text{Distribuindo os fatores:} \\
\\
\int \left[ u^{1,1}. \frac{1}{3u} -1 . u^{1,1} \right]du\\
\\
\text{Distribuindo as potencias:} \\
\\
\int \left[ \frac{u^{1}.u^{0,1}}{3u}  -1 . u^{1,1} \right]du \\
\\
\text{Cortando o que puder e usando a propriedade da diferenca de uma integral:} \\
\\
\frac{1}{3} \int u^{0,1}.du - \int u^{1,1}du \\
\\
\text{Integrando temos:} \\
\\
\left[ \frac{1}{3} . \frac{u^{1,1}}{1,1}  - \frac{u^{2,1}}{2,1} \right] + C \\
\\
\text{E finalmente:} \\
\\
\frac{u^{1,1}}{3,3} - \frac{u^{2,1}}{2,1} + C

Seria isso ?
Espero que esteja certo..
procyon
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Out 31, 2011 23:40
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Integral

Mensagempor MarceloFantini » Ter Nov 01, 2011 03:34

De fato, esqueci o \frac{1}{3} multiplicando. Desculpe.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59