• Anúncio Global
    Respostas
    Exibições
    Última mensagem

isntante (t) derivada

isntante (t) derivada

Mensagempor bc_anderson » Dom Out 16, 2011 18:03

Boa tarde, meu nome é Anderson, tenho uma dúvida, pois sei que tal problema se resolve por derivada porém não sei como faze-lo.
Um trem deixa uma estação, num certo instante, e vai para a direção norte à razão de 80 km/h. Um segundo trem deixa a estação 2 horas depois e vai na direção leste à razão de 95 km/h. Determine a taxa na qual estão se separando os dois trens 2 horas e 30 minutos depois do segundo trem deixar a estação.
Em relação à minha dúvida, calculei assim:
1º trem: fez e 4h30min a uma veloc. de 80 km/h 360 km. o 2º trem em 2h30mim fez 237 km a uma veloc de 95 km/h. fazendo a diferença encontrei 122,5 km de no período de 2h30min. é isso mesmo?
bc_anderson
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 16, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: isntante (t) derivada

Mensagempor LuizAquino » Dom Out 16, 2011 18:47

bc_anderson escreveu:Um trem deixa uma estação, num certo instante, e vai para a direção norte à razão de 80 km/h. Um segundo trem deixa a estação 2 horas depois e vai na direção leste à razão de 95 km/h. Determine a taxa na qual estão se separando os dois trens 2 horas e 30 minutos depois do segundo trem deixar a estação.


A figura abaixo ilustra esse exercício.

estação.png
estação.png (6.1 KiB) Exibido 3134 vezes


Note que d = \sqrt{a^2 + b^2} .

Considerando como tempo inicial o instante no qual o segundo trem deixa a estação, podemos escrever que:

a(t) = 80(t+2)

b(t) = 95t

Desse modo, temos que:

d(t) = \sqrt{[80(t+2)]^2 + (95t)^2}

Agora basta calcular d^\prime\left(\frac{5}{2}\right) .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59