• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] derivada de funções trigonometricas

[LIMITE] derivada de funções trigonometricas

Mensagempor beel » Qua Set 21, 2011 13:09

Qual a derivada f'(a) de sen(2x), sendo sen (2x) = 2sen(x).cos(x)?

Meu raciocínio foi:

f'(a) = (2sen(x))'.cos(x) + (2sen(x)).(cos(x))' =
2(cos(x)).cos(x) + 2.sen(x)(-sen (x))

2cos(x)² - 2sen(x)²

ta correto?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] derivada de funções trigonometricas

Mensagempor Neperiano » Qua Set 21, 2011 15:11

Ola

A derivada fica assim

2cosx.cosx + 2senx.-senx

2cosx^2 -2senx^2

Está correto sim

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [LIMITE] derivada de funções trigonometricas

Mensagempor LuizAquino » Qua Set 21, 2011 16:51

isanobile escreveu:2cos(x)² - 2sen(x)²


Neperiano escreveu:2cosx^2 -2senx^2


O correto é escrever:

f^\prime(a) = 2\cos^2 a  - 2\,\textrm{sen}\,^2 a

Podemos ainda simplificar a resposta aplicando a identidade trigonométrica \cos 2\alpha = \cos^2 \alpha - \,\textrm{sen}\,^2\alpha. Desse modo, podemos reescrever o resultado como:

f^\prime(a) = 2\cos 2a

Observação
Cuidado para não confundir \cos^2 \alpha com \cos \alpha^2 e nem \textrm{sen}\,^2 \alpha com \textrm{sen}\, \alpha^2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] derivada de funções trigonometricas

Mensagempor beel » Dom Out 16, 2011 17:07

Ok,obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}