• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] assintotas duvida

[limite] assintotas duvida

Mensagempor beel » Ter Set 06, 2011 13:37

O "candidato" a assintota vertical, é aquele numero (a) que zera o denominador certo?Tenho que fazer então \lim_{x\rightarrow ^- ^+ a} ( limites laterais). Como confirmo se esse numero a, é a assintota vertical?
Se por exemplo o \lim_{x\rightarrow ^-  a} = - \infty

\lim_{x \rightarrow ^+ a} = + \infty
( limites laterias nao coincidem...)

A assintota existe?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [limite] assintotas duvida

Mensagempor LuizAquino » Ter Set 06, 2011 20:46

isanobile escreveu:O "candidato" a assintota vertical, é aquele numero (a) que zera o denominador certo?

Mais ou menos isso. Lembre-se que a assíntota vertical é uma reta e não um número. Desse modo, o certo é dizer que a reta x = a é uma candidata a assíntota vertical.

isanobile escreveu:Tenho que fazer então \lim_{x\to a^-} f(x) e \lim_{x\to a^+} f(x) ( limites laterais).

Sim.

isanobile escreveu:Como confirmo se esse numero a, é a assintota vertical?

A reta x = a será uma assíntota vertical se qualquer um dos três limites acontecer:

(i) \lim_{x\to a} f(x) = \infty

(ii) \lim_{x\to a^-} f(x) = \infty

(iii) \lim_{x\to a^+} f(x) = \infty

(*) Vale lembrar que o resultado do limite pode ser mais infinito ou menos infinito.

isanobile escreveu:Se por exemplo o \lim_{x\to a^-} f(x) = - \infty e \lim_{x \to a^+} f(x)= + \infty
( limites laterias nao coincidem...)

A assintota existe?

Sim, existe a assíntota. O que não existe seria o limite \lim_{x\to a} f(x).

Por exemplo, considere a função f(x) = \frac{1}{x-1} .

Note que temos:

\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \frac{1}{x-1} = -\infty

\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \frac{1}{x-1} = +\infty

Desse modo, não existe o limite \lim_{x\to 1} f(x) (já que os limites laterais são distintos), mas a reta x = 1 existe e representa uma assíntota vertical do gráfico de f. Veja a figura abaixo.

grafico.png
grafico.png (4.81 KiB) Exibido 1406 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] assintotas duvida

Mensagempor beel » Dom Out 16, 2011 16:57

Ok,obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59