por Vincent Mazzei » Dom Abr 19, 2009 15:47
Dado que

encontre, se existir, o limite. Caso não exista, explique por quê.
(só vou colocar uma alternativa)(d)

-
Vincent Mazzei
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Abr 19, 2009 15:33
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por marciommuniz » Dom Abr 19, 2009 16:06
Pelas propriedades dos limites temos que

Sabemos que não existe divisão por zero, então o limite
não existe!Bons estudos!
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
-

marciommuniz
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qua Abr 08, 2009 20:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
- Andamento: cursando
por Vincent Mazzei » Dom Abr 19, 2009 16:38
Mas e se f(x) for

e g(x) for

sabemos que o limite quando x tende a 1 é igual a dois, foi por essa razão que fiquei em dúvida e pensei em responder: "impossível definir sem conhecer as funções". Estou errado?
-
Vincent Mazzei
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Abr 19, 2009 15:33
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Seg Abr 20, 2009 12:56
Vincent Mazzei escreveu:Mas e se f(x) for

e g(x) for

sabemos que o limite quando x tende a 1 é igual a dois, foi por essa razão que fiquei em dúvida e pensei em responder: "impossível definir sem conhecer as funções". Estou errado?
Vê se é isso que você tinha dúvida:
Considerando as funções que você informou, e fazendo o quociente de uma pela a outra temos que:

Caso não for sua dúvida, desculpa.
Bom estudo!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 4997 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4317 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4557 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4075 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2648 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.