por Faby » Seg Set 19, 2011 10:50
O conjunto B delimitado pelos gráficos das retas y=x+3, y=-1, x=2 e pelos gráficos das curvas

e

.
Resolução:
Fiz o gráfico, então pensei na seguinte soma para calcular a área S
![S=\int_{-4}^{0}\left[x+3-(-1)-{x}^{2}+1 \right]dx+\int_{0}^{2}\left\left[ ({x}^{2}+1 \right)-\sqrt[]{x} \right]dx+\int_{0}^{1}\left[-\sqrt[]{x}-\left(-1 \right) \right]dx S=\int_{-4}^{0}\left[x+3-(-1)-{x}^{2}+1 \right]dx+\int_{0}^{2}\left\left[ ({x}^{2}+1 \right)-\sqrt[]{x} \right]dx+\int_{0}^{1}\left[-\sqrt[]{x}-\left(-1 \right) \right]dx](/latexrender/pictures/b890234704ea17da485ec6e8a08b0f08.png)
Estou no caminho certo?
obrigada
Editado pela última vez por
Faby em Ter Set 20, 2011 12:28, em um total de 1 vez.
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Seg Set 19, 2011 10:58
Faby,
Por favor, poste também suas tentativas e dúvidas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Faby » Ter Set 20, 2011 13:05
Postei minhas considerações direto na pergunta,
Como faço pra colocar o gráfico?
obrigada
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Qua Set 21, 2011 01:11
A figura abaixo ilustra o conjunto B.

- área-B.png (10.43 KiB) Exibido 5939 vezes
Note que a área de B será dada por:

Faby escreveu:Como faço pra colocar o gráfico?
Use a opção "Adicionar um anexo" disponível durante a edição de sua mensagem.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Faby » Qua Set 21, 2011 01:54
...vou calcular cada integral separadamente, mas agora preciso dormir,
pela manhã posto o resultado que cheguei, desde já, muito obrigada.
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Faby » Qua Set 21, 2011 20:08
calculando as integrais separadamente, cheguei ao seguinte resultado:
![=\left|-3 \right|+2+\left|3 \right|+\frac{4}{3}+\frac{14-2\sqrt[]{8}}{3}+\left|\frac{-1}{3} \right| =\left|-3 \right|+2+\left|3 \right|+\frac{4}{3}+\frac{14-2\sqrt[]{8}}{3}+\left|\frac{-1}{3} \right|](/latexrender/pictures/a42baca35de7053ab1cfb14f8c3e2613.png)
está na ordem das integrais proposta anteriormente.
Estou no caminho?
obrigada
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Faby » Qua Set 21, 2011 23:16
eu já tinha encontrado um erro, ficando assim
=|-3|+2+|3|+4/3+(14-4?2)/3+|-1/3|=3+2+3+4/3+(14-4?2)/3+1/3= 8+(19-4?2)/3=(24+19-4?2)/3=(43-4?2)/3
na primeira integral é que o resultado está ficando diferente, não consegui chegar a -1/2 e sim a -6/2
onde será que estou errando.
vou fazer o cálculo novamente
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Faby » Qua Set 21, 2011 23:27
...acho que encontrei meu erro, vou calcular novamente, já mando o novo resultado pra primeira integral,
att
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Faby » Qui Set 22, 2011 00:41
...encontrei meu erro, calculei a primitiva errada, cheguei a -1/2.
Obrigada
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo de Áreas utilizando integrais
por Rambox » Ter Jun 14, 2011 14:38
- 2 Respostas
- 2062 Exibições
- Última mensagem por Rambox

Ter Jun 14, 2011 14:54
Cálculo: Limites, Derivadas e Integrais
-
- [integrais] Calculando áreas - Integrais
por Faby » Seg Set 19, 2011 10:55
- 11 Respostas
- 8360 Exibições
- Última mensagem por LuizAquino

Qua Set 21, 2011 18:03
Cálculo: Limites, Derivadas e Integrais
-
- Integrais (áreas) [dúvida]
por citadp » Qua Jun 20, 2012 11:21
- 4 Respostas
- 2942 Exibições
- Última mensagem por Russman

Qui Jun 21, 2012 10:58
Cálculo: Limites, Derivadas e Integrais
-
- Interseção entre áreas (Integrais)
por thejotta » Seg Abr 30, 2018 16:52
- 3 Respostas
- 10967 Exibições
- Última mensagem por Gebe

Ter Mai 01, 2018 22:51
Cálculo: Limites, Derivadas e Integrais
-
- Integral - Cálculo de áreas
por pinkfluor » Qui Jul 21, 2011 11:38
- 3 Respostas
- 2685 Exibições
- Última mensagem por pinkfluor

Qui Jul 21, 2011 17:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.