por gabrielspadon » Sex Set 16, 2011 11:55
Como calculo esse limite?
![\lim_{x \to \ 5} \frac {\sqrt[2]{x} - \sqrt[2]{5}}{\sqrt[2]{x+5} - \sqrt[2]{10}} \lim_{x \to \ 5} \frac {\sqrt[2]{x} - \sqrt[2]{5}}{\sqrt[2]{x+5} - \sqrt[2]{10}}](/latexrender/pictures/33d320260681c13aeb06a135b71cc506.png)
-
gabrielspadon
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Jul 02, 2011 22:10
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Aliocha Karamazov » Sex Set 16, 2011 16:38
Comece multiplicando, no numerador e no denominador, pelos conjugados de ambos.
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
por Anne2011 » Sex Set 16, 2011 17:27
O -5 da segunda equação não é expoente, não estou muito familiarizada com o látex...

-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
por MarceloFantini » Sex Set 16, 2011 17:36
Anne, isto que você fez está errado, não faz sentido e não é a dica de Aliocha. Multiplique numerador e denominador por

, faça algumas distributivas e veja o que acontece.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Anne2011 » Sex Set 16, 2011 17:57
Ops, tens razão... Pera q vou tentar de novo...
-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
por Anne2011 » Sex Set 16, 2011 18:22
Fiz aqui e deu indeterminação... Calculo o slimites laterais? (não lembro mais

)
-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Anne2011 » Sex Set 16, 2011 18:40
Fantini, agora fiz assim:
![\lim_{x\rightarrow5}\frac{\sqrt[2]{x}-\sqrt[2]{5}}{\sqrt[2]{(x+5)}-\sqrt[2]{10}} \lim_{x\rightarrow5}\frac{\sqrt[2]{x}-\sqrt[2]{5}}{\sqrt[2]{(x+5)}-\sqrt[2]{10}}](/latexrender/pictures/53196ceef3b567a29edc555c018fa858.png)
![\lim_{x\rightarrow5}{\left(\frac{\sqrt[2]{x}-\sqrt[2]{5}}{\sqrt[2]{(x+5)-\sqrt[2]{10}}} \right)}^{2}.{\left(\frac{\sqrt[2]{(x+5)+\sqrt[2]{10}}}{\sqrt[2]{(x+5)+\sqrt[2]{10}}} \right)}^{2} \lim_{x\rightarrow5}{\left(\frac{\sqrt[2]{x}-\sqrt[2]{5}}{\sqrt[2]{(x+5)-\sqrt[2]{10}}} \right)}^{2}.{\left(\frac{\sqrt[2]{(x+5)+\sqrt[2]{10}}}{\sqrt[2]{(x+5)+\sqrt[2]{10}}} \right)}^{2}](/latexrender/pictures/2416c2ff4529a40b16f124a2485718a4.png)
Agora sim, cortando as raizes fica:

=

E agora?
-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
por Anne2011 » Sex Set 16, 2011 18:43
Hunm... Tô vendo que terei que rever essa materia...

-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
por MarceloFantini » Sex Set 16, 2011 18:44
O que você fez está errado no sentido de que você calculou para outra função (e errado também). Verifique minha resolução.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Anne2011 » Sex Set 16, 2011 18:59
Ok.

-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
por LuizAquino » Sáb Set 17, 2011 10:39
Anne2011 escreveu:Hunm... Tô vendo que terei que rever essa materia...

Se precisar, então veja se as vídeo-aulas em meu canal podem lhe ajudar:
http://www.youtube.com/LCMAquino
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Anne2011 » Sáb Set 17, 2011 15:01
Tenho tds os seus vídeos... me ajudando sempre

Agora to vendo os de integrais, tenho prova essa semana e tô apanhando muito pra resolver...
-
Anne2011
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Qui Jun 23, 2011 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecanica
- Andamento: cursando
por gabrielspadon » Sáb Set 17, 2011 19:04
Marcelo Fantini, na sua resolução, porque você não aplicou a distributiva tambem na ultima expressão? E porque o sinal das expressões se inverteram?
-
gabrielspadon
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Jul 02, 2011 22:10
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por MarceloFantini » Sáb Set 17, 2011 19:26
Não apliquei a distributiva pois não era conveniente. Não me ajudaria a perceber que fator se cancelaria, e pelo jeito que a questão foi formulada estava claro que precisava fazer aparecer

no numerador e denominador para cancelar. Que sinal se inverteu? Lembre-se do produto notável

. Neste caso, no numerador por exemplo temos

e

, e assim

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6405 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4431 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4745 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 6957 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4185 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.