• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor thiago toledo » Qua Set 14, 2011 12:47

Achar, caso existam, os pontos de Máximo Relativo, Mínimo Relativo e de Inflexão Horizontal da função definida por:

f(x)=\frac{{x}^{4}}{4}+\frac{{x}^{3}}{3}-{3x}^{2}+77
Editado pela última vez por thiago toledo em Qui Set 15, 2011 16:57, em um total de 2 vezes.
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor MarceloFantini » Qua Set 14, 2011 14:01

Derive uma vez, iguale a zero e resolva para encontrar os pontos de máximo e mínimo da função. Em seguida, calcule a segunda derivada e iguale a zero novamente para encontrar os pontos de inflexão.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Derivada]

Mensagempor LuizAquino » Qua Set 14, 2011 17:06

Thiago Toledo,

Eu recomendo que você assista as vídeo-aulas "21. Cálculo I - Teste da Primeira e da Segunda Derivada " e "22. Cálculo I - Construção de Gráficos".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada]

Mensagempor thiago toledo » Qui Set 15, 2011 16:58

Com a ajuda dos videos do prof. Aquino eu encontrei:

- Pontos criticos (0, 2, -3)

- Pelo teste de derivadas a segunda encontrei:

f''(0) = -6 ----> Ponto Maximo

f''(-3) = 15 ----> Ponto Minimo

Esta correto??

Só que para encontrar os pontos de inflexão horizontal eu não entendi como fazer. O que eu devo fazer para encontrar os pontos de inflexão horizontal?
thiago toledo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 13, 2011 18:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: [Derivada]

Mensagempor LuizAquino » Qui Set 15, 2011 21:28

thiago toledo escreveu:- Pontos criticos (0, 2, -3)

Ok.

thiago toledo escreveu:f''(0) = -6 ----> Ponto Maximo

f''(-3) = 15 ----> Ponto Minimo

Ok. Mas por que você também não calculou f''(2)?

thiago toledo escreveu:Só que para encontrar os pontos de inflexão horizontal eu não entendi como fazer. O que eu devo fazer para encontrar os pontos de inflexão horizontal?

Veja a definição de ponto de inflexão horizontal:
Ponto de inflexão horizontal
http://pessoal.sercomtel.com.br/matemat ... .htm#mxm04

Após entender a definição tente resolver o exercício. Caso ainda fique com dúvida, então poste aqui até onde você conseguiu avançar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.