por killerkill » Dom Ago 21, 2011 14:13
Estava fazendo exercícios aqui me veio uma dúvida. Antes vou mostrar a questão aqui pra poder me explicar melhor.
![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right) \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right)](/latexrender/pictures/2325e98bef91714b9c772acb2e8b39d7.png)
a resolução fica assim:
![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6} \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6}](/latexrender/pictures/9dd8ccf67ab708c77b4d2a1e6b2f01d3.png)
Porquê eu preciso fazer esse trabalho de multiplicar toda expressão por
digo isso porque após esse passo, eu terei de dividir o numerador e denominador por x correto? Se eu,antes de multiplicar a minha equaçao por esse termo ja dividisse tudo por x ficaria assim:
![\frac{{\left(\sqrt[2]{9x^2+x }-3x \right)}}{x}= \frac{\sqrt[2]{9x^2+x}}{x}-\frac{3x}{x}= \sqrt[2]{\frac{9x^2+x}{x^2}}-3= 3-3=0 \frac{{\left(\sqrt[2]{9x^2+x }-3x \right)}}{x}= \frac{\sqrt[2]{9x^2+x}}{x}-\frac{3x}{x}= \sqrt[2]{\frac{9x^2+x}{x^2}}-3= 3-3=0](/latexrender/pictures/3be728c25c18f41af6183156bd5b7be2.png)
A resposta é errada. Todavia, não consigo enxergar no caminho a impossibilidade de fazer esse cálculo dessa maneira.
Por fim, oque então me faz pensar que é necessário fazer:
![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6} \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6}](/latexrender/pictures/9dd8ccf67ab708c77b4d2a1e6b2f01d3.png)
-
killerkill
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Ago 09, 2011 22:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eg. Elétrica
- Andamento: cursando
por LuizAquino » Dom Ago 21, 2011 20:59
killerkill escreveu:![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right) \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right)](/latexrender/pictures/2325e98bef91714b9c772acb2e8b39d7.png)
a resolução fica assim:
![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6} \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6}](/latexrender/pictures/9dd8ccf67ab708c77b4d2a1e6b2f01d3.png)
Porquê eu preciso fazer esse trabalho de multiplicar toda expressão por
Em primeiro lugar, você não
apenas multiplicou tudo por

. Você multiplicou e dividiu tudo por isso.
Em segundo lugar, a ideia básica é reescrever o limite de modo a aparecer termos como

, pois desse modo podemos usar o fato de que se

, então

.
killerkill escreveu:Se eu,antes de multiplicar a minha equaçao por esse termo ja dividisse tudo por x ficaria assim:
![\frac{{\left(\sqrt[2]{9x^2+x }-3x \right)}}{x}= \frac{\sqrt[2]{9x^2+x}}{x}-\frac{3x}{x}= \sqrt[2]{\frac{9x^2+x}{x^2}}-3= 3-3=0 \frac{{\left(\sqrt[2]{9x^2+x }-3x \right)}}{x}= \frac{\sqrt[2]{9x^2+x}}{x}-\frac{3x}{x}= \sqrt[2]{\frac{9x^2+x}{x^2}}-3= 3-3=0](/latexrender/pictures/3be728c25c18f41af6183156bd5b7be2.png)
A resposta é errada.
É claro que está errado! Por exemplo, veja que

(com x não nulo e diferente de 1). Por outro lado, temos que

(com x não nulo).
Isso significa que para não alterar a expressão você deveria multiplicar e dividir tudo por x. Entretanto, mesmo que nesse exercício você fizesse isso, veria que não ajudaria na solução, pois acabaria em uma indeterminação do tipo

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites no infinito]Limite no infinito de um ponto finito
por moyses » Ter Ago 30, 2011 12:45
- 3 Respostas
- 3279 Exibições
- Última mensagem por LuizAquino

Ter Ago 30, 2011 18:57
Cálculo: Limites, Derivadas e Integrais
-
- [limites] limite no infinito
por baloso » Qua Abr 30, 2014 17:19
- 3 Respostas
- 1957 Exibições
- Última mensagem por Russman

Qui Mai 01, 2014 15:26
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] limites no infinito com raízes
por camila_braz » Dom Jun 11, 2017 11:42
- 0 Respostas
- 2949 Exibições
- Última mensagem por camila_braz

Dom Jun 11, 2017 11:42
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites que tendem ao infinito com raízes
por Mell » Qua Mai 01, 2013 15:21
- 3 Respostas
- 2714 Exibições
- Última mensagem por e8group

Sáb Mai 04, 2013 02:41
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4464 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.