• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Topologia do Espaço Euclidiano R^n

Topologia do Espaço Euclidiano R^n

Mensagempor 380625 » Qua Ago 17, 2011 18:15

Estou estudando o conceito de bola aberta e não consigo entender o que é um ponto interior a uma bola aberta.

Desculpa pela pouca informação pois estou muito confuso.
Grato
Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Topologia do Espaço Euclidiano R^n

Mensagempor MarceloFantini » Qua Ago 17, 2011 20:41

Qual a sua dúvida, especificamente? Talvez algum exercício ou definição que não tenha ficado clara. Soa como se você estivesse confundindo conceitos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Topologia do Espaço Euclidiano R^n

Mensagempor marciosouza » Dom Abr 14, 2013 17:41

PONTO INTERIOR, segue da definição de que:

Def. Seja A(contido em)M e A(diferente de vazio). dizemos que um ponto x é interior de A, se existir uma bola aberta centrada em x e contida em A, de modo que:x\in Int(A)\Leftrightarrow \exists B(x,r)\subset A

Como exemplo:

Considere em R2 o conjunto dos pontos interiores à uma circunferência de centro (1,1)... todos os pontos internos à circunferência compõe a B(x,1) aberta ***já que os pontos sobre a circunferência pertencem à ela mas não são internos à mesma.
marciosouza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Set 20, 2011 16:25
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: