• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DIFERENCIAIS

DIFERENCIAIS

Mensagempor Lismara » Qua Jun 22, 2011 23:27

Através de diferencias podemos calcular a derivada DX/DY , se X e Y forem funções de uma terceira variável , neste caso a derivada DX/DY da função associada a equação XY-2X+Y=5 é

x\frac{dx}{dx}+y\frac{dy}{dx}-2\frac{dx}{dx}+1\frac{dy}{dx}
\left(x-2 \right)+\left(y+1 \right)\frac{dy}{dx}
\frac{dy}{dx}=-\frac{\left(x-2 \right)}{y+1}

resolvi assim, mas não está correta, alguém pode me ajudar, para eu saber o que estou fazendo de errado?
Lismara
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Ago 31, 2009 22:20
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: DIFERENCIAIS

Mensagempor MarceloFantini » Qua Jun 22, 2011 23:47

Você quer derivar implicitamente e encontrar \frac{\rm{d}x}{\rm{d}y} ou \frac{\rm{d}y}{\rm{d}x}? Ou é outra coisa?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: DIFERENCIAIS

Mensagempor carlosalesouza » Qui Jun 23, 2011 02:50

Me parece que nossa cara colega se confundiu um pouco na interpretação do problema...

Está com cara de um exercício simples, voltado a quem está começando a aprender sobre diferencial, não é?

Assim, creio que o que se procura seja a derivada dy/dx... o que confunde muita gente, quando está entrando nesse assunto, é entender a diferença entre derivada e diferencial...

Lismara, a diferencial dy é igual à derivada da função y em razão de x multiplicada pela diferencial dx, que é sempre igual ao \Delta x, correto?

Assim, por lógica pura e simples, se dy = y'\cdot dx\Rightarrow \frac{dy}{dx}=y', ou seja, a razão entre as duas diferenciais é a derivada da função y... ok?

Então, pra encontrar a derivada de uma funçao, podemos diferenciar cada termo e, isolando os fatores comuns dy e dx, isolando-os do mesmo lado da igualdade na forma de uma fração dy/dx teremos, por equivalência, a derivada da função...

Agora, vamos parar de conversa e demonstrar o problema? rs

xy-2x+y=5

Diferenciando cada termo:
\\
xy = f(uv)|(u=x,du=dx);(v=y,dv=dy)\Rightarrow d(uv)=u.dv+v.du = x.dy+y.dx\\
-2x \rightarrow -2dx\\
y\rightarrow dy\\
5\rightarrow 0

A expressão, então, será:
\\
xdy+ydx-2dx+dy=0\\
dx(y-2)+dy(x+1)=0\\
dy(x+1)=-dx(y-2)\\
\frac{dy}{dx}=\frac{2-y}{x+1}

Correto?

Conclusão, sua resposta final está correta, mas, eu te aconselho a observar com bastante atenção seu desenvolvimento, pois as diferenciais que vc usou não fazem sentido... ou melhor, elas não deveriam estar como frações... só existe o numerador de cada fração que aparece na primeira linha do seu desenvolvimento, afinal, se fôssemos trabalhar a partir desta primeira linha, não conseguiriamos chegar algebricamente à resposta que chegamos, concorda? a começar pelo fato que x.dx/dx = x e por aí afora... rs

Enfim... se permanecer alguma dúvida... só dar um grito, heheheh

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: DIFERENCIAIS

Mensagempor Lismara » Qui Jun 23, 2011 18:40

Obrigada Carlos Alexandre, eu achava que era essa resposta, mas não tinha ideia de como chegar nela.
Mas acho que estamos fazendo o mesmo curso, só somos de tutores diferentes não é?
De qual turma vc é?
Eu sou da turma 2 e meu pólo é Faxinal, sou de Mauá da Serra.
Lismara
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Ago 31, 2009 22:20
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: DIFERENCIAIS

Mensagempor carlosalesouza » Sáb Jun 25, 2011 01:22

Verdade verdadeira... rs

Sou da turma 1, de Apucarana...

Minha tutora de cálculo é a Lynlia... rs
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.