• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor Jaison Werner » Sáb Jun 11, 2011 15:24

CALCULE PELA REGRA DE SIMPSON O VALOR \int_{1}^{3}x\sqrt[]{x},, com n=4:
Jaison Werner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Sex Abr 23, 2010 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: integral

Mensagempor Jaison Werner » Sáb Jun 11, 2011 15:49

h=\frac{b-a}{n}
I= \frac{h}{3}({y}_{0}+{4y}_{1}+{y}_{2})
h= \frac{3-1}{3}= 0,67
{y}_{0}=1\sqrt[]{1}=1
{y}_{1}=1,5 \sqrt[]{1,5}=1,84
{y}_{2}=2\sqrt[]{2}=2,83
I = \frac{0,67}{3}(1+4.1,84+2,83)
I= 2,5
{E}_{t}=\frac{{-h}^{5}}{90}.f""(£)
{E}_{t}= \frac{-0,67}{90}.0,56
[tex]{E}_{t}=-0,004
f(x)=x\sqrt[]{x}
f(x)=x.{x}^{\frac{1}{2}}
f(x)={x}^{\frac{3}{2}}
f(x)= \frac{3}{2}.{x}^{\frac{1}{2}}
f"(x)=\frac{3}{2}.\frac{1}{2}{x}^{\frac{-1}{2}}
f""(x)= \frac{3}{4}.(\frac{-1}{2}){n}^{\frac{-3}{2}}
f""(x)=\frac{-3}{8}{x}^{\frac{-3}{2}}
f""(x)=\frac{-3}{8}.(\frac{-3}{2}){x}^{\frac{-5}{2}}
f""(x)=\frac{9}{16}.\frac{1}{\sqrt[]{{x}^{5}}}
f"""(1)= \frac{9}{16\sqrt[]{{1}^{5}}}
f""(1) = 0,56
Jaison Werner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Sex Abr 23, 2010 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: integral

Mensagempor Jaison Werner » Sáb Jun 11, 2011 15:50

Este meu calculom está correto?Alguem poderia me responder por favor?
Jaison Werner
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Sex Abr 23, 2010 20:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: integral

Mensagempor LuizAquino » Sáb Jun 11, 2011 19:12

Esse mesmo exercício foi resolvido no tópico:
Re: iNTEGRAIS
viewtopic.php?f=120&t=4841#p16214

Quanto ao cálculo de f^{(4)}(x) da função f(x) = x\sqrt{x}, de fato temos que f^{(4)}(x) = \frac{9}{16\sqrt{x^5}} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: