• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização - Máximo e Mínimo

Otimização - Máximo e Mínimo

Mensagempor elbert005 » Dom Jun 05, 2011 20:32

Bom pessoal, eu vou apresentar este trabalho na quarta, gostaria quem alguem especializado no assunto avalia-se se possível, para ver onde posso melhorar e se alguma coisa esta errada na resolução!!!!


Encontre o ponto P na parábola y=x² que está mais próximo de (3,0). Justifique sua resposta que o ponto que você encontrou é realmente o mais próximo.

Bom, para iniciarmos o problema utilizaremos a fórmula da distância entre dois pontos.

Solução: A distância entre os pontos (3,0) e (x,y) é:
d=?((x-3)^2+(y-0)²) , como vamos trabalhar em termos de x, logo substituiremos y=x², sendo assim:
d=?((x-3)^2+(x^2 )^2 ) , agora iremos inverter a raiz de lado, logo: d²=f(x) (x-3)^2+(x^2)², devemos nos convencer que o mínimo de d ocorre no mesmo mínimo de d², porém é mais fácil de ser trabalhar com este último.
Derivando obtemos:
f^' (x)=2(x-3)+2(x^2 )2x
f^' (x)=2x-6+4x³
Como a equação é 2x-6+4x^3, a resposta que se obtém é x=1, desde que: f(1)=4.1³+2.1-6=0
Dividindo a equação por (x-1)* ? 2x³-x-3| x-1
2x³-2x^2 2x^2+2x+3
2x^2+x
2x²-2x
3x-3
3x-3
0
Desde b²-4ac é negativo em 2x²+2x+3, não há mais soluções.
Voltando à nossa função da primeira derivada, vamos provar também pelo teste da Segunda Derivada.
f^' (x)=4x³+2x-6
f^'' (x)=12x²+2, logo f(1)=12.1²+2=14

Logo se f^' (c)=0 e f^'' (c)>0 , então f tem um mínimo local em c.
Pensando na imagem, este deve ser o lugar onde ocorre um mínimo e não máximo. Também ao pensar sobre imagem, não há máximo.
O valor correspondente de y é y=x²=1. Assim o ponto sobre y=x² mais próximo de (3,0) é (1,1).
elbert005
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Mai 31, 2011 15:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.