Determinar, após exatamente 27 minutos, a taxa de variação da distancia entre os carros e decidir se os mesmo estão se afastando ou aproximando um do outro.R.:-60km/h, ou os carros se aproximam a 60km/h.
Eu queria saber se na hora de montarmos a nossa hipótese seria desse jeito:
e 
O sinal de menos seria porque os dois carros se aproxima de T, desse modo a distancia deles em relação a T iria diminuir, ou seja, temos uma função decrescente.Correto?
Com isso eu cheguei nessa resposta:
para t=0,45h, sendo c a hipotenusa do triangulo retangulo formado.Só que no enunciado ele fala para decidir se os mesmo estão se afastando ou aproximando um do outro, como a nossa resposta deu -60km/h, não quer dizer que eles estão se aproximando, pois a distancia entre eles diminui.Mas na resposta diz o contrário do meu raciocínio.


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)