• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio de Limite - Duvida

Exercicio de Limite - Duvida

Mensagempor Claudin » Dom Mai 15, 2011 13:04

No Cálculo de limite
\lim_{x\rightarrow+\infty}\frac{x-2}{\sqrt[]{3x^2+1}-2}

utilizando uma estrategia de dividir tanto o denominador como o numerador por X
gostaria de saber o pq de utilizar essa estrategia
tem algum meio facilitador, que nos da entender q a melhor forma e essa? Ou só com pratica msm?
como mostrado no video aos 7:56 http://www.youtube.com/watch?v=DFILsy8Jmys
a divisão da raiz passa como x^2, e se fosse uma multiplicaçao tbm passaria?

obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Exercicio de Limite - Duvida

Mensagempor LuizAquino » Dom Mai 15, 2011 14:00

Eu recomendo que você revise o conteúdo de racionalização. Um bom canal para isso é o do Nerckie:
http://www.youtube.com/nerckie

Das propriedades de radiciação temos que se a e b são números positivos, então é válido que:
(i) a\sqrt{b} = \sqrt{a^2b} ;

(ii) \frac{\sqrt{b}}{a} = \sqrt{\frac{b}{a^2}} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Exercicio de Limite - Duvida

Mensagempor Claudin » Dom Mai 15, 2011 14:06

Por lógica ja dava pra saber mesmo.
Se vc retira um elemento da raiz ele logicamente sai do ²
se vc "coloca" ele entra com ², pela propriedade de radiciaçao da pra esclarecer melhor!
obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.