por Cristiano Tavares » Qua Mai 11, 2011 22:16
Olá a todos,
Já tentei exaustivamente mas não consegui resolver a questão que segue abaixo:
f: R em R é a função dada por

, nessa função o (cost) está elevado à sexta potência, e não apenas a variável "t".
Nesse caso f ' (0) = 4 . Verdadeiro ou falso?
A minha dificuldade está no fato de que dentro da integral a variável é "t", enquanto que o "x" aparece em um dos limites de integração.
Gostaria de entender como essa questão pode ser resolvida.
Agradeço desde já a atenção dispensada.
-
Cristiano Tavares
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Mai 11, 2011 21:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
por MarceloFantini » Qua Mai 11, 2011 23:35
Não é para resolver a integral. Pelo teorema fundamental do cálculo, quando

, com

constante, então

. Então, derivando

você terá a função da integral como uma função de x, logo basta substituir por zero e ver se é verdadeiro.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cristiano Tavares » Qua Mai 11, 2011 23:59
Marcelo,
Muito obrigado pela ajuda, sua resposta foi rápida, clara e objetiva. Um abraço!
-
Cristiano Tavares
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Mai 11, 2011 21:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- P.A nao consigo resolver essa p.a.
por Dalila » Sex Nov 14, 2008 16:58
- 2 Respostas
- 2949 Exibições
- Última mensagem por admin

Sex Nov 14, 2008 17:29
Progressões
-
- Não consigo resolver essa questão com derivada
por Cristiano Tavares » Sáb Jun 18, 2011 12:18
- 2 Respostas
- 1699 Exibições
- Última mensagem por Cristiano Tavares

Sáb Jun 18, 2011 15:07
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver essa integral.
por 380625 » Qua Set 07, 2011 14:02
- 3 Respostas
- 2902 Exibições
- Última mensagem por Neperiano

Qua Set 07, 2011 15:37
Cálculo: Limites, Derivadas e Integrais
-
- Alguém pode me ajudar a resolver essa integral?
por V_Netto » Seg Jul 30, 2012 12:05
- 1 Respostas
- 1776 Exibições
- Última mensagem por Russman

Seg Jul 30, 2012 12:54
Cálculo: Limites, Derivadas e Integrais
-
- Não consigo calcular essa derivada!!!
por Catalao » Qua Mai 09, 2012 19:51
- 3 Respostas
- 2218 Exibições
- Última mensagem por LuizAquino

Seg Mai 14, 2012 14:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.