• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor Bruhh » Seg Mai 09, 2011 20:17

Olá boa noite.

Bom, estou fazendo um trabalho no qual eu tenho que calcular o volume de um sólido de forma aproximada
(soma de Riemann) e de forma exata (integral).
Já fiz um trabalho muito semelhante a este algum tempo atrás e por este motivo acho que estou resolvendo de forma errada
já que os valores estão muito diferentes. Vamos ao meu dilema:

A função é: 5x{e}^{-\frac{x}{2}} + \frac{y.(13-y)}{8}
Sendo que:
0\leq x \leq8
0\leq y \leq12
\Delta x = \Lambda y = 1cm
Utilizando o ponto médio.

Então para a soma de Riemann fiz: f(0,5 ; 0,5) + f(0,5 ; 1,5) + f(0,5 ; 2,5) ... + f(7,5 ; 11,5).
Somando todas essas funções obtive V=582,830221 cm³

Então resolvi a integral:
\int_{0}^{12} \int_{0}^{8} 5x{e}^{-\frac{x}{2}} + \frac{y.(13-y)}{8} dxdy
\int_{0}^{12} - \frac{5x{e}^{-\frac{x}{2}}}{2} - \frac{5{e}^{-\frac{x}{2}}}{4} + \frac{13}{8}xy - \frac{x{y}^{2}}{8}
\int_{0}^{12} - 0,009157819 - 0,022894548 + \frac{5}{4} + 13y - {y}^{2}
- 0,009157819y - 0,022894548y + \frac{5}{4}y + \frac{13{y}^{2}}{2} - \frac{{y}^{3}}{3}
=374,6153716 cm³

O outro trabalho que eu resolvi, também pelo ponto médio, deu uma diferença menor que 1.
Como os valore são quase o dobro um do outro creio que algo está errado mas não sei o que.

Por favor alguém me ajuda, é muito importante!!
Muito Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor LuizAquino » Seg Mai 09, 2011 20:56

Confira a sua solução:
\int 5x{e}^{-\frac{x}{2}} + \frac{y(13-y)}{8} dx = - 10(x + 2) e^{-\frac{x}{2}} - \frac{1}{8}(y - 13)xy + c, com c uma constante real.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor Bruhh » Ter Mai 10, 2011 15:01

Desculpe mas não consegui lhe compreender.
Você está me falando que eu resolvi a integral em relação a x de forma errada?
Aquela resolução que você me mostrou seria a certa? Ou que a diferença dos valores é devido a "+ contante" ?

Muito Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor Bruhh » Ter Mai 10, 2011 15:02

Desculpe mas não consegui lhe compreender.
Você está me falando que eu resolvi a integral em relação a x de forma errada?
Aquela resolução que você me mostrou seria a certa? Ou que a diferença dos valores é devido a "+ contante" ?

Muito Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor LuizAquino » Ter Mai 10, 2011 17:28

Note que você errou a integral em relação a x. A solução correta dessa integral é a que eu enviei anteriormente.

Além disso, note que eu enviei a solução da integral indefinida. A partir dela você precisa calcular a integral definida de 0 a 8.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integral e Soma Dupla de Riemann - Por Favor, Urgente!

Mensagempor Bruhh » Ter Mai 10, 2011 19:33

Muitíssimo obrigaaaaaaada!
Resolvi novamente e agora os valores estão bem próximos.

Muito obrigada mesmo.
Boa Noite
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?