por LuizAquino » Seg Mai 09, 2011 20:01
Como sempre, é uma questão de usar produtos notáveis.
Sabemos que:

.
Desse modo, você precisa multiplicar o numerador e o denominador por:
![\left(\sqrt[3]{(1+2x)^2} + \sqrt[3]{1+2x} + 1\right) \left(\sqrt[3]{(1+2x)^2} + \sqrt[3]{1+2x} + 1\right)](/latexrender/pictures/cb9eb920bd3670ba578c6687ce945114.png)
Note que fazendo isso você fará com que no numerador apareça o produto notável desejado:
![\left(\sqrt[3]{1+2x} - 1\right)\left(\sqrt[3]{(1+2x)^2} + \sqrt[3]{1+2x} + 1\right) = \left(\sqrt[3]{1+2x}\right)^3 - 1^3 = 2x \left(\sqrt[3]{1+2x} - 1\right)\left(\sqrt[3]{(1+2x)^2} + \sqrt[3]{1+2x} + 1\right) = \left(\sqrt[3]{1+2x}\right)^3 - 1^3 = 2x](/latexrender/pictures/c324c789d78b250ff0d24d1f9ec8a0ea.png)
Podemos também usar outra estratégia. Façamos a substituição de variáveis:
![u = \sqrt[3]{1+2x} u = \sqrt[3]{1+2x}](/latexrender/pictures/51ffb485cdd9b52340a997c98f6ae231.png)
. Teremos que quando x tende para 0, u tenderá para 1. Além disso, temos que

. Desse modo, o limite original é equivalente a:

.
Note que de novo você usará o produto notável indicado anteriormente.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite indeterminado
por ewald » Qui Mai 05, 2011 17:55
- 1 Respostas
- 1759 Exibições
- Última mensagem por LuizAquino

Qui Mai 05, 2011 18:12
Cálculo: Limites, Derivadas e Integrais
-
- Limite indeterminado 0/0
por ewald » Qui Mai 05, 2011 19:08
- 1 Respostas
- 4259 Exibições
- Última mensagem por LuizAquino

Qui Mai 05, 2011 19:41
Cálculo: Limites, Derivadas e Integrais
-
- Limite indeterminado
por ewald » Ter Mai 17, 2011 15:40
- 13 Respostas
- 6243 Exibições
- Última mensagem por FilipeCaceres

Qua Mai 18, 2011 15:47
Cálculo: Limites, Derivadas e Integrais
-
- Limite indeterminado ? - ?
por cjunior94 » Ter Mai 01, 2012 22:00
- 1 Respostas
- 1768 Exibições
- Última mensagem por LuizAquino

Qua Mai 02, 2012 14:17
Cálculo: Limites, Derivadas e Integrais
-
- Limite trigonometrico indeterminado
por ewald » Qui Mai 26, 2011 15:15
- 11 Respostas
- 5484 Exibições
- Última mensagem por MarceloFantini

Dom Mai 29, 2011 02:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.