• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de Limite de Função Racional

Calculo de Limite de Função Racional

Mensagempor joaofonseca » Qua Mai 04, 2011 20:50

Seja o seguinte limite:

\lim_{x \to\infty }\frac{x^{2}+1}{x-4}

Ao definir o dominio da função, fiquei a saber que excluí o número 4, pois é o valor que anula o denominador. Pelo metodo experimental, fui substituindo x por valores cada vez maiores. Cheguei à conclusão que o limite seria x+4. Será verdade?
Como posso chegar à mesma conclusão de uma forma analitica/algébrica?

Obrigado
Editado pela última vez por joaofonseca em Qua Mai 04, 2011 21:10, em um total de 2 vezes.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Calculo de Limite de Função Racional

Mensagempor LuizAquino » Qua Mai 04, 2011 21:03

Note que:
\lim_{x \to + \infty }\frac{x^{2}+1}{x-4} = \lim_{x \to + \infty }\frac{(x^{2}+1):x^2}{(x-4):x^2} = \lim_{x \to + \infty }\frac{1+\frac{1}{x^2}}{\frac{1}{x}-\frac{4}{x^2}} = +\infty

Sugestão
Eu acredito que o tópico abaixo possa lhe interessar.

Curso de Cálculo I no YouTube
viewtopic.php?f=137&t=4280
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo de Limite de Função Racional

Mensagempor joaofonseca » Qua Mai 04, 2011 21:39

Então o racíocino que posso fazer é:

\lim_{x \to \infty}1=1

\lim_{x \to \infty}\frac{1}{x^2}=0

\lim_{x \to \infty}\frac{1}{x}=0

\lim_{x \to \infty}\frac{4}{x^2}=0

Assim:

\frac{1+0}{0+0}=\frac{1}{0}

que é uma indeterminação.Não entendi.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Calculo de Limite de Função Racional

Mensagempor LuizAquino » Qua Mai 04, 2011 23:53

Eu recomendo que você assista a vídeo-aula "06. Cálculo I - Limites no Infinito" no meu canal no YouTube, cujo o endereço está no tópico que sugeri anteriormente.

Note que \lim_{x \to + \infty }1+\frac{1}{x^2}=1+0=1 e \lim_{x \to + \infty }\frac{1}{x}-\frac{4}{x^2}=0-0=0. Além disso, analisando a função f(x) = \frac{x^2 + 1}{x - 4} percebemos que para x > 4 temos que f(x) > 0. Considerando essas informações, temos que \lim_{x \to + \infty }\frac{x^2 + 1}{x - 4} = +\infty
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59