• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CALCULAR LIMITE

CALCULAR LIMITE

Mensagempor Michelee » Dom Mai 01, 2011 12:04

Como resolver essa questão de limite :?:

lim x-->1 = t³ + t² - 5 t + 3 / t³ - 3t +2
Michelee
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Abr 26, 2011 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: CALCULAR LIMITE

Mensagempor LuizAquino » Dom Mai 01, 2011 12:28

Primeiro, vamos organizar o que você escreveu.

O texto "lim x-->1 t³ + t² - 5 t + 3 / t³ - 3t +2" em uma notação adequação ficaria como:

\lim_{x\to 1} t^3 + t^2 - 5t + \frac{3}{t^3} - 3t + 2

Entretanto, ao que parece você deseja mesmo calcular o limite:

\lim_{t\to 1} \frac{t^3 + t^2 - 5t + 3}{t^3- 3t + 2}

Vou considerar que você quis dizer "t --> 1" quando escreveu "x --> 1".

Nesse caso, note que para t=1 tanto o numerador quanto o denominador são 0. Isso significa que (t-1) divide exatamente tanto o numerador quanto o denominador.

Sendo assim, você deve procurar escrever t^3 + t^2 - 5t + 3 = (t-1)(at^2+bt+c) e t^3 - 3t + 2 = (t-1)(dt^2+et+f). Todo o seu trabalho será determinar as constantes a, b, c, d, e e f. Para isso, use divisão de polinômios.

Sugestão
Eu acredito que o tópico abaixo possa lhe interessar:
Curso de Cálculo I no YouTube
viewtopic.php?f=137&t=4280
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: CALCULAR LIMITE

Mensagempor Michelee » Dom Mai 01, 2011 13:07

Obrigada pela ajuda :y:
Eu sei fazer a divisão de polinômios mas essa divisão tem as incognitas que me confundiram na hora de resolver
Michelee
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Abr 26, 2011 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: CALCULAR LIMITE

Mensagempor LuizAquino » Dom Mai 01, 2011 19:01

Basicamente você tem 2 estratégias para efetuar a divisão entre esses polinômios:
1) usar o dispositivo prático de Briot Ruffini;
2) efetuar a divisão "extensa" de polinômios.

Uma outra estratégia que você pode usar (mais trabalhosa nesse caso) é determinar os coeficientes por comparação.

Por exemplo, temos que:
t^3 + t^2 - 5t + 3 = (t-1)(at^2+bt+c) \Rightarrow t^3 + t^2 - 5t + 3 = at^3 +(b-a)t^2 + (c-b)t - c \Rightarrow \begin{cases} a=1\\ b-a = 1 \\ c-b = -5 \\ -c = 3\end{cases} \Rightarrow \begin{cases} a=1\\ b = 2 \\ c = -3\end{cases} .

Portanto, temos que:
t^3 + t^2 - 5t + 3 = (t-1)(t^2+2t-3) .

Agora, complete o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}