• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor Maykids » Qui Abr 28, 2011 12:05

Pessoal segunda avaliação chegando ai e to com uma duvida cruel...
e com derivadas que multiplicam 3 partes, exemplo:

sen(x).Tg(x).Cos(x)
isso é so um exemplo, mais a duvida persiste na seguinte coisa:
*regra do produto vai dar certo? pois se eu isolar 2 elementos e 1 ficar fora exemplo (sen(x).tg(x)).Cos(x), eu vo derivar duas vezes uma coisa, entao eu acredito que isso não é correto,
*faço calculo 1 ehehe axo que so pode com as regras de calculo 1
obrigado
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Derivadas

Mensagempor LuizAquino » Qui Abr 28, 2011 12:22

Sejam f, g e h funções diferenciáveis em um mesmo domínio D. É válido nesse domínio que:

[fgh]' = [(fg)h]' = [fg]'h + [fg]h' = (f'g + fg')h + fgh' = f'gh + fg'h + fgh'
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas

Mensagempor SidneySantos » Qui Abr 28, 2011 13:10

f(x) = sen(x).tg(x).Cos(x)

f'(x) = (sen(x).tg(x))'.cos(x) + sen(x).tg(x).(cos(x))'

f'(x) = cos(x)[(sen(x))'tg(x) + sen(x).(tg(x))'] + sen(x).tg(x).(-sen(x))

f'(x) = cos(x)[cos(x).tg(x) + sen(x).sec²(x)] - sen²(x).tg(x)

f'(x) = cos²(x).tg(x) + sen(x).cos(x).sec²(x) - sen²(x).sen(x)/cos(x)

f'(x) = cos²(x).sen(x)/cos(x) + sen(x).cos(x).1/cos²(x) - sen³(x)/cos(x)

f'(x) = cos²(x).sen(x)/cos(x) + sen(x)/cos(x) - sen³(x)/cos(x)

f'(x) = [cos²(x).sen(x) + sen(x) - sen³(x)]/cos(x)

f'(x) = sen(x)(cos²(x) + 1 - sen²(x))/cos(x)

f'(x) = sen(x)(cos²(x) + cos²(x))/cos(x)

f'(x) = [2sen(x)cos²(x)]/cos(x)

f'(x) = 2sen(x)cos(x) = sen(2x)

ou

f(x) = sen(x).tg(x).Cos(x) = sen(x).sen(x)/cos(x) . cos(x) = sen²(x)

f'(x) = 2sen(x)cos(x) = sen(2x)
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}