• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de Limite!!

Calculo de Limite!!

Mensagempor vyhonda » Ter Abr 19, 2011 19:50

Galera,

como resolver isso ai.... quando se trata de raiz quadrada basta multiplicar pelo conjugado,

mas qual sera o conjugado do numerador para multiplicar???

\lim_{x\rightarrow0} \frac{\sqrt[3]{8-2x+{x}^{2}}-2}{x-{x}^{2}}



a resp é -1/6 [url]http://www.wolframalpha.com/input/?i=lim&a=*C.lim-_*Calculator.dflt-&f2=%28%288-2x%2Bx^2%29^%281%2F3%29-2%29%2F+%28x-x^2%29&f=Limit.limitfunction_%28%288-2x%2Bx^2%29^%281%2F3%29-2%29%2F+%28x-x^2%29&f3=0&f=Limit.limit_0&a=*FVarOpt.1-_**-.***Limit.limitvariable--.**Limit.direction---.*--[/url]


Valeu pela ajuda!!
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando

Re: Calculo de Limite!!

Mensagempor LuizAquino » Ter Abr 19, 2011 20:01

Leia o tópico abaixo e em seguida tente resolver o exercício. Você vai usar uma estratégia parecida.

Racionalização de denominador composto de "três parcelas"
viewtopic.php?f=106&t=4276
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo de Limite!!

Mensagempor vyhonda » Qua Abr 20, 2011 00:34

Opa LuizAlquino ,

valeu pela ajuda...
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}