• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral em coordenadas esféricas

Integral em coordenadas esféricas

Mensagempor bruna106 » Sáb Abr 09, 2011 15:22

Olá Boa Tarde

Estou tentando resolver um exercício mas o resultado não confere com o do livro. Se alguém puder me ajudar
eu ficarei muito grata.

**** A questão com a figura e resposta está em anexo ****

Para calcular o volume tentei fazer assim:

Limites:
0\leq\theta\geq\frac{3\pi}{2}
0\leq\phi\geq\frac{\pi}{2}
2\leq\rho\geq\ 5

\int_{0}^{\frac{3\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{2}^{5} (50 -\frac{100}{{\rho}^{2}}).{\rho}^{2}sen\phi d\rho d\phi d\theta
\int_{0}^{\frac{3\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{2}^{5} 50{\rho}^{2}sen\phi - 100sen\phi d\rho d\phi d\theta
\int_{0}^{\frac{3\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{50{\rho}^{3}sen\phi}{3} - 100\rho sen\phi d\phi d\theta
\int_{0}^{\frac{3\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{950 sen\phi}{3} - 300sen\phi d\phi d\theta
\int_{0}^{\frac{3\pi}{2}} \frac{-950 cos\phi}{3} + 300scos\phi d\theta

Parei por aqui pois quando substitui meus limites de phi notei que o resultado seria muito próximo de zero e conseqüentemente nÃo resultará no valor correto.
Não sei se meus limites estão errados ou se integrei algo errado. Alguém pode me ajudar por favor?

Muito Obrigada
Anexos
calculo.jpg
bruna106
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 20, 2008 21:47
Área/Curso: Estudante
Andamento: cursando

Re: Integral em coordenadas esféricas

Mensagempor LuizAquino » Seg Abr 11, 2011 11:04

A casca esférica no exercício pode ser representada pela região em coordenadas esféricas:

R = \left\{(\rho,\, \theta,\, \phi) \,|\, 2\leq \rho \leq 5,\, \frac{\pi}{2}\leq \theta \leq 2\pi,\, 0 \leq \phi \leq \frac{\pi}{2}\right\}

O volume dessa região será dada pela integral tripla (em coordenadas esféricas):
V = \int_{0}^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{2\pi} \int_{2}^{5} \rho^2\textrm{sen }\phi\, d\rho d\theta d\phi

O exercício diz que a temperatura (em coordenadas esféricas) da região é dada por T(\rho,\, \theta,\, \phi) = 50 - \frac{100}{\rho^2} (em graus Celsius).

Desse modo, a temperatura média sobre essa região será:
\overline{T} = \frac{1}{V}\int_{0}^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{2\pi} \int_{2}^{5} T(\rho,\, \theta,\, \phi)\rho^2\textrm{sen }\phi\, d\rho d\theta d\phi

Agora, refaça o exercício considerando essas informações.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: