por Andersonborges » Dom Abr 03, 2011 20:13
pessoal.. nao consigo sai desse exercio
calcule os limtes
17.
![\lim_{h\rightarrow-4} \frac{\sqrt[]{2({h}^{2}- 8 )}+h}{h+4} \lim_{h\rightarrow-4} \frac{\sqrt[]{2({h}^{2}- 8 )}+h}{h+4}](/latexrender/pictures/18e74d0f0dde44f3065fe0f9657f072f.png)
-
Andersonborges
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qui Fev 24, 2011 02:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por Andersonborges » Dom Abr 03, 2011 20:14
folha dde resposta aqui diz ser -1
-
Andersonborges
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qui Fev 24, 2011 02:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por Elcioschin » Dom Abr 03, 2011 21:36
Fazendo por L'Hopital
Numerador ----> f(h) = V2*(h²- 8)^(1/2) + h ----> f '(h) = V2*(1/2)*[(h² - 8)^(-1/2)]*h + 1 ----> f '(h) = V2*h/V(h² - 8) + 1
Denomnador ----> g(h) = h ----> g'(h)= 1
Limite {V[2(h² - 8)] + h}/h = Limite [V2*h/V(h² - 8) + 1] = V2*(-4)/V[(-4)² - 8] + 1 = - 4*V2/V8 + 1 = - 2 + 1 = - 1
h--->-4 .........................h--->-4
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Andersonborges » Dom Abr 03, 2011 22:04
amigo.. me tira uma duvida.. esse metodo de l'hopital é unico jeito
eu nao lembro de ter aprendido por esse metodo.
essa materia começo agora... e perdi um dia de aula =(.. vou imprimi sua resposta e interpreta-la
obrigado
-
Andersonborges
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qui Fev 24, 2011 02:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por LuizAquino » Seg Abr 04, 2011 12:13
A Regra de L'Hopital é usada para calcular alguns limites quando já se foi estudado o conceito de derivada.
Obviamente, no início do curso de Cálculo vemos apenas limites. Portanto, nesse caso não podemos usar derivadas.
Para resolver o limite que você deseja, multiplique o numerador e denominador por

e use o produto notável

:
![\lim_{h\rightarrow -4} \frac{\sqrt{2({h}^{2}- 8 )}+h}{h+4} = \lim_{h\rightarrow -4} \frac{[\sqrt{2({h}^{2}- 8 )}+h][\sqrt{2({h}^{2}- 8 )}-h]}{(h+4)[\sqrt{2({h}^{2}- 8 )}-h]} \lim_{h\rightarrow -4} \frac{\sqrt{2({h}^{2}- 8 )}+h}{h+4} = \lim_{h\rightarrow -4} \frac{[\sqrt{2({h}^{2}- 8 )}+h][\sqrt{2({h}^{2}- 8 )}-h]}{(h+4)[\sqrt{2({h}^{2}- 8 )}-h]}](/latexrender/pictures/d2f23ce3ec77e0f430c4c6733d2bcfaa.png)
![= \lim_{h\rightarrow -4} \frac{2(h^2-8) - h^2}{(h+4)[\sqrt{2({h}^{2}- 8 )}-h]} = \lim_{h\rightarrow -4} \frac{2(h^2-8) - h^2}{(h+4)[\sqrt{2({h}^{2}- 8 )}-h]}](/latexrender/pictures/d0228e19c7395fecda8e95f19a2fd280.png)
![= \lim_{h\rightarrow -4} \frac{h^2-16}{(h+4)[\sqrt{2({h}^{2}- 8 )}-h]} = \lim_{h\rightarrow -4} \frac{h^2-16}{(h+4)[\sqrt{2({h}^{2}- 8 )}-h]}](/latexrender/pictures/e137c8da3a1ddf09423b1ea54df03391.png)
![= \lim_{h\rightarrow -4} \frac{(h-4)(h+4)}{(h+4)[\sqrt{2({h}^{2}- 8 )}-h]} = \lim_{h\rightarrow -4} \frac{(h-4)(h+4)}{(h+4)[\sqrt{2({h}^{2}- 8 )}-h]}](/latexrender/pictures/41e1b6535b9c4a04613901ff999b24d1.png)

![= \frac{-4-4}{\sqrt{2[(-4)^{2}- 8 ]}-(-4)} = \frac{-4-4}{\sqrt{2[(-4)^{2}- 8 ]}-(-4)}](/latexrender/pictures/5eca0e17c6d451cfad896887f471e794.png)
= -1
SugestãoEu acho que o tópico abaixo pode lhe interessar:
Curso de Cálculo I no YouTubeviewtopic.php?f=137&t=4280
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por mindy » Qui Abr 14, 2011 19:47
Gostaria de tirar uma dúvida,por favor.Como fazer o estudo do limite de Forma Analítica e Geométrica da função(ax+b).Não tentei primeiramente,porque não sei por onde começar.Pois não entendi o enunciado.Se puderem me ajudar.Ficarei imensamente grata.
-
mindy
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 06, 2011 14:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Qui Abr 14, 2011 22:31
Olá mindy,
Por questão de organização, não use tópicos existentes para postar novos exercícios.
Por favor, crie um novo tópico para o seu exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo: Limites, Derivadas e Integrais] Cálculo de limites
por jeferson lopes » Ter Mar 26, 2013 08:49
- 2 Respostas
- 4937 Exibições
- Última mensagem por jeferson lopes

Ter Mar 26, 2013 11:52
Cálculo: Limites, Derivadas e Integrais
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4090 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2664 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Dúvida em questão de Limites no infinito
por Jacques » Ter Jul 12, 2016 21:42
- 4 Respostas
- 7324 Exibições
- Última mensagem por vitor_jo

Qua Jul 13, 2016 16:51
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 2 - Limites] Existência de Limites
por Piva » Seg Abr 16, 2012 11:29
- 0 Respostas
- 3012 Exibições
- Última mensagem por Piva

Seg Abr 16, 2012 11:29
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.